1. INTRODUÇÃO

Apresentam-se em sequência as fases para a elaboração de um projeto de saneamento municipal.

1.1. ESTUDO DE CONCEPÇÃO (EC):

1ª Fase: Dados e características da comunidade

- localização, limites, aspectos climáticos;
- acessos, transportes;
- comunicação (DDD, rádio, TV);
- geologia/geotecnia;
- população (características e tendências de crescimento);
- educação;
- energia elétrica;
- saneamento ambiental;
- aspectos econômicos (produção e arrecadação).

2ª Fase: O Licenciamento ambiental

Estudos ambientais:

São todos e quaisquer estudos relativos aos aspectos ambientais relacionados à localização, instalação, operação e ampliação de uma atividade ou empreendimento, apresentados como subsídio para a análise da licença ambiental requerida, tais como: relatório ambiental, plano e projeto de controle ambiental, diagnóstico ambiental, plano de manejo, plano de recuperação de área degradada e análise preliminar de risco.

Impacto ambiental:

(Resolução CONAMA 01/86) qualquer alteração das propriedades físicas, químicas e biológicas do meio ambiente, causada por qualquer forma de matéria ou energia resultante das atividades humanas que, direta ou indiretamente, afetam:

I – a saúde, a segurança e o bem-estar da população:

II – as atividades sociais e econômicas;

III - a biota:

IV – as condições estéticas e sanitárias do meio ambiente;

V - a qualidade dos recursos ambientais.

Links associados, entre outros que você deverá acessar para desenvolver projetos de saneamento ambiental:

www.fepam.rs.gov.br

www.sema.rs.gov.br

www.mma.gov.br

www.portoalegre.rs.gov.br/smam/licenciamentoambiental (Manual do

Licenciamento Ambiental de Porto Alegre, PMPA).

Licenciamento Ambiental

Constituição Federal/1988:

Art. 225 – CF: Toda atividade/obra potencial ou efetivamente poluidora exige Estudo prévio de Impacto ambiental (EIA/RIMA)

Complementam:

Resolução CONAMA Nº 237/97, licenciamento ambiental - atividades

Art. 2°: A localização, construção, instalação, ampliação, modificação e operação de empreendimentos e atividades utilizadoras de recursos ambientais consideradas efetiva ou

potencialmente poluidoras, bem como os empreendimentos capazes, sob qualquer forma, de causar degradação ambiental, dependerão de prévio licenciamento do órgão ambiental competente, sem prejuízo de outras licenças legalmente exigíveis.

- § 1º Estão sujeitos ao licenciamento ambiental os empreendimentos e as atividades relacionadas no Anexo 1, parte integrante desta Resolução.
- § 2º Caberá ao órgão ambiental competente definir os critérios de exigibilidade, o detalhamento e a complementação do Anexo 1, levando em consideração as especificidades, os riscos ambientais, o porte e outras características do empreendimento ou atividade.
- Art. 3°: A licença ambiental para empreendimentos e atividades consideradas efetiva ou potencialmente causadoras de significativa degradação do meio dependerá de prévio estudo de impacto ambiental e respectivo relatório de impacto sobre o meio ambiente (EIA/RIMA), ao qual dar-se-á publicidade, garantida a realização de audiências públicas, quando couber, de acordo com a regulamentação.

Parágrafo único. O órgão ambiental competente, caso verifique que a atividade ou empreendimento não é potencialmente causador de significativa degradação do meio ambiente, definirá os estudos ambientais pertinentes ao respectivo processo de licenciamento.

Atividades constantes no Anexo I:

Obras civis:

- Rodovias, ferrovias, hidrovias, metropolitanos
- barragens e diques
- canais de drenagem
- retificação de curso de água
- abertura de barras, embocaduras e canais
- transposição de bacias hidrográficas
- outras obras de arte.

Serviços de utilidade

- produção de energia termoelétrica
- transmissão de energia elétrica
- estações de tratamento de água
- interceptores, emissários, estação elevatória e tratamento de esgoto sanitário
- tratamento e destinação de resíduos industriais (líquidos e sólidos)

- tratamento/disposição de resíduos especiais tais como: de agroquímicos e suas embalagens usadas e de serviço de saúde entre outros
- tratamento e destinação de resíduos urbanos, inclusive aqueles provenientes de fossas
 - dragagem e derrocamentos em corpos d'água
 - recuperação de áreas contaminadas ou degradadas.

Atividades diversas

- parcelamento do solo ("loteamentos")
- distrito e pólo industrial.

Resolução CONAMA Nº 5/88, licenciamento ambiental – saneamento

Resolução CONAMA N° 01/86:

- Art. 2° Dependerá de elaboração de estudo de impacto ambiental e respectivo relatório de impacto ambiental RIMA, a serem submetidos à aprovação do órgão estadual competente, e do IBAMA e em caráter supletivo, o licenciamento de atividades modificadoras do meio ambiente, tais como:
- $V\,-\,$ Oleodutos, gasodutos, minerodutos, troncos coletores e emissários de esgotos sanitários;
- XV Projetos urbanísticos, acima de 100 ha, ou em áreas consideradas de relevante interesse ambiental a critério da SEMA e dos órgãos municipais e estaduais competentes;

Resolução CONAMA nº 377/06:

Leis Municipais que dispõem sobre o licenciamento ambiental: consultar Secretarias Municipais; os municípios podem ser mais restritivos que o estado e a União.

3ª Fase: O sistema existente

- a) Sistema de abastecimento de água:
 - Recursos hídricos e manancial;
 - Captação;
 - Adução;
 - Tratamento;
 - Reservação;
 - Distribuição.
- b) Sistema de esgotamento sanitário:
 - Rede coletora;
 - Estações de bombeamento;
 - Tratamento.

Bases do projeto:

- Projeção de população para 30 anos;
- Consumo "per capita";
- k₁ e k₂ (coeficientes do dia e hora de maior consumo);
- Fixação do nível de atendimento.

Formulação de alternativas para o sistema em estudo:

- Mananciais e corpos receptores;
- Traçado;
- ETA ou ETE (pelo menos três hipóteses);
- Bombeamentos, reservatórios, emissários, etc.

Pré-dimensionamento de alternativas:

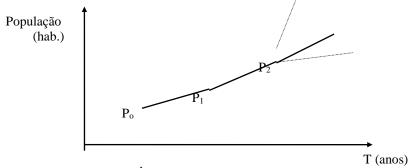
- Pré-dimensionamento de alternativas;
- Estimativas de custos das alternativas.

4^a Fase:

Análise econômico-financeira das alternativas:

- Técnica de otimização (estratificação no tempo);
- Circulares COSAN nº 1 e 2 da CEF;
- O Custo Marginal.

Escolha da melhor alternativa.


1.2. PROJETO TÉCNICO (PT)

O projeto técnico é a fase em que se procede ao detalhamento da que for julgada a melhor alternativa.

2. PROJEÇÃO DE POPULAÇÃO E CONSUMOS PROGRESSIVOS

2.1. PROLONGAMENTO DA CURVA DE CRESCIMENTO

Método pouco difundido, pois depende do sentimento do projetista.

2.2. CRESCIMENTO ARITMÉTICO

Conhecidas as populações P_o e P_1 , respectivamente nos anos T_0 e T_1 , calcular "r", que é a taxa de crescimento populacional percentual anual.

A taxa de crescimento populacional percentual anual no período compreendido entre P_{o} e P_{1} é dada por:

$$\mathbf{r} = \frac{P_1 - P_0}{P_1 * (T_1 - T_0)}$$

A população em um ano qualquer a partir de P₁ é dada por:

$$\mathbf{P} = P_1 + r * P_1 * (T - T_1)$$

Onde T é o ano para o qual se quer projetar a população.

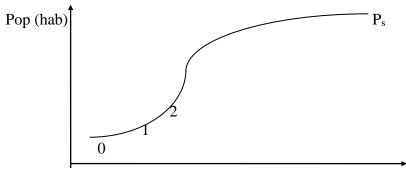
É um método adequado para comunidades de pequeníssimo porte. Pode-se utilizar dados de cidades vizinhas, na falta de dados da comunidade em estudo. Normalmente, as taxas de crescimento oscilam entre 2,0 e 5,0 % a.a.

2.3. CRESCIMENTO GEOMÉTRICO

É o método mais adequado para cidades de médio porte, e para aquelas com crescimento muito acentuado, com grandes populações, excetuando-se no Brasil as capitais de estados.

Conhecidas as populações P_0 e P_1 , respectivamente nos anos T_0 e T_1 , define-se a taxa de crescimento populacional anual.

A taxa de crescimento populacional percentual anual no período compreendido entre P_{o} e P_{1} é dada por:


$$\mathbf{r} = \sqrt[T_{1-}T_0]{\frac{P_1}{P_0}} - 1$$

A população em um ano qualquer a partir de P_1 é dada por:

$$\mathbf{P} = P_1 * (1 + r)^{T-T1}$$

2.4. CURVA LOGÍSTICA

É o método mais adequado para cidades de muito grande porte e para aquelas que estão tendendo à saturação (é o caso de Porto Alegre). A curva de crescimento apresenta a conformação do "S".

T (anos)

O método possui, no entanto, algumas restrições para sua utilização:

a) São necessários três pontos:

$$P_0, T_0; P_1, T_1; P_2, T_2$$

b) O distanciamento (tempo) entre os pontos considerados deve ser igual:

$$T1 - T_0 = d$$
; $T_2 - T_0 = 2d$

c) Deve-se ter:

$$P_0 * P_2 < P_1^2$$

A população de saturação é dada por:

$$\mathbf{P_s} = \frac{2*P_0*P_1*P_2 - P_1^2*(P_0 + P_2)}{P_0*P_2 - P_1^2}$$

A população em um ano qualquer a partir de To é dada por:

$$\mathbf{P} = \frac{P_s}{1 + 2,718^{a-bT}}$$

Onde:

a = constante;

b = razão de crescimento populacional;

T = Período para o qual se quer projetar, em anos, contado a partir de T_o.

As constantes "a" e "b" são calculadas a partir das seguintes expressões:

$$\mathbf{a} = \frac{1}{0,4343} \log \frac{P_s - P_0}{P_0}$$

$$\mathbf{b} = -\frac{1}{0,4343*t} \log \frac{P_0 * (P_s - P_1)}{P_1 * (P_s - P_0)}$$

onde "t" é o tempo entre T_o e T_1 ou T_1 e T_2 .

Exemplo 1: São dados:

1960 = 13.161 hab

1970 = 18.898 hab

1980 = 30.496 hab

1990 = 52.085 hab

Calcular as taxas anuais de crescimento pelos métodos aritmético e geométrico.

Solução:

a) Método aritmético:

1970/1980 -
$$r = \frac{30.496 - 18.898}{18.898 * 10} = 3,80 \% \text{ a.a.}$$

1980/1990 -
$$r = \frac{52.085 - 30.496}{30.496 * 10} = 4,15 \% \text{ a.a.}$$

b) Método geométrico:

1970/1980 -
$$r = \sqrt[10]{\frac{30.496}{18.898}} - 1 = 4,90 \% \text{ a.a.}$$

1980/1990 -
$$r = \sqrt[10]{\frac{52.085}{30.496}} - 1 = 5,50 \% \text{ a.a.}$$

Discussão e decisão final:

Verifica-se que há a tendência de crescimento de população no último período. Nestas condições, parece ser o método geométrico o mais adequado para refletir o fenômeno de crescimento populacional. Como a projeção deve ser feita para os 30 anos futuros, a partir de 1990, pode-se fixar:

Exemplo 2 (Tarefa sugerida para casa).

São dados: 1970 = 90.723 hab

1980 = 144.799 hab 1990 = 230.168 hab

Calcular, pelo método da curva logística, P_{2000} , P_{2010} , P_{2020} e P_s . Calcular o ano para o qual vai acontecer P_s (considere neste caso que "P" terá um habitante a menor que P_s , para levantar a indeterminação).

2.5. CONSUMOS PROGRESSIVOS

Para o estabelecimento dos consumos progressivos ao longo de um determinado período de projeto, tornam-se indispensáveis alguns elementos. Normalmente, as Concessionárias dos serviços de saneamento - no RS, a CORSAN e o DMAE, além de alguns poucos espalhados pelo estado (Pelotas, Caxias do Sul, Bagé, São Leopoldo, Livramento) - detém o controle mensal de sua produção de água, bem como do número de economias controladas, não controladas e totais ligadas ao sistema, que estabelecem o volume mensal de água a ser obtido a partir do sistema produtor.

Um exemplo desse controle é mostrado em sequência.

Exemplo: Os dados da CORSNA para o ano de 1988, em Frederico Westphalen, são apresentados na tabela que segue.

	Nı	ímero de Economi	ias	
Mês	Controladas	Não	Total	Produção (m ³)
		controladas		
Janeiro	2.522	436	2.958	74.912
Fevereiro	2.533	433	2.966	72.741
Março	2.539	448	2.987	75.214
Abril	2.535	456	2.991	72.857
Maio	2.551	544	3.095	68.646
Junho	2.533	558	3.091	72.059
Julho	2.535	574	3.109	72.059
Agosto	2.530	579	3.109	80.166
Setembro	2.530	591	3.121	95.299
Outubro	2.536	610	3.146	84.052
Novembro	2.538	641	3.179	92.758
Dezembro	2.537	715	3.252	93.694
Média	2.535	549	3.084	79.538

O número de habitantes por economia, para o exemplo em questão, foi fixado em 4,50 hab/econ. A perda de água produzida atingiu no ano em estudo, o percentual de 51,87%.

A análise da tabela anterior servirá para consistir a projeção de população e ainda, possibilitará o estudo do Índice de Atendimento, do "per capita" de projeto e do coeficiente do dia de maior consumo, k_1 .

Sendo fornecidos agora, dados de população levantados pelo IBGE para a comunidade em estudo, é possível iniciar-se o encaminhamento da definição dos Consumos Progressivos ao longo do tempo. São dados os seguintes valores recenseados:

$$1970 = 7.938 \text{ hab}$$

 $1980 = 12.661 \text{ hab}$
 $1990 = 21.627 \text{ hab}$

Projeção populacional:

Utilizando-se o método geométrico de projeção, próprio para o caso em pauta, tem-se:

1970/1980 -
$$r = \sqrt[10]{\frac{12.661}{7.938}} - 1 = 4,78 \% \text{ a.a.}$$

1980/1990 -
$$r = \sqrt[10]{\frac{21.627}{12.661}} - 1 = 5,50 \% \text{ a.a.}$$

Para uma projeção de 30 anos a partir de 1990, serão adotadas as seguintes taxas de crescimento:

$$1990/2000$$
 - $r = 5,00 \%$ a.a. $r = 4,50 \%$ a.a. $r = 4,50 \%$ a.a. $r = 4,00 \%$ a.a.

Resulta, assim:

$$P_{1991} = 21.627 * (1 + 0.05)^1 = 22.709 \text{ hab}$$

$$P_{1992} = 21.627 * (1 + 0.05)^2 = 23.844 \text{ hab ou ainda},$$

$$P_{1992} = 22.709 * (1 + 0.05)^1 \approx 23.844 \text{ hab}$$

Deve-se sempre arredondar as populações para mais, a fim de não ocorrerem casas decimais (não existe meio indivíduo).

Índice de atendimento:

A população abastecida em dezembro de 1988, pelos dados da Tabela de Controle, era:

$$P_{1988} = 3.252 \text{ econ } * 4,50 \text{ hab/econ} = 14.634 \text{ hab. abastecidos}$$

À taxa de crescimento de 5,50 % a.a., daquele período, resultaria em 1990:

$$P_{1990} = 14.634 \text{ hab.} * (1 + 0.055)^2 = 16.288 \text{ hab.}$$
 abastecidos

Relacionando-se as duas populações constata-se que o índice de atendimento é:

$$I_A = \frac{16.288}{21.627} = 0,75 \text{ ou } 75 \%$$

Conclui-se assim que há demanda reprimida e o sistema deve ser ampliado. Será fixado um nível de atendimento de 95 %.

"Per capita" de projeto: Significa quanto cada indivíduo consome por dia.

O consumo "Per capita" médio bruto (leva em consideração as perdas):

$$\mathbf{q} = \frac{79.538m^3 / mes}{3.084econ*4,50 \frac{hab}{econ}*30 dias / mes} = 191 \text{ l/hab.dia}$$

"Per capita" no mês de maior consumo (Setembro/88 = 95.299 m³/mês)):

$$q = \frac{95.299}{3.121*4.50*30} = 226 \text{ l/hab.dia}$$

O índice de perdas médio para o ano de 1988 (fornecido pela Concessionária), foi de 51,87 %. Assim, o "per capita" líquido se não houvessem perdas seria:

$$(1 - 0.5187) * 226 l/hab.dia = 108,77 l/hab.dia$$

Admitindo que após a ampliação o sistema apresente um nível aceitável de perdas da ordem de 30 %, obtém-se: (atentar sempre para o índice aceitável de perdas vigente quando da elaboração de um projeto).

$$108,77 * \frac{100}{100-30} = 155,39 \text{ l/hab.dia} (a considerar nos próximos 30 anos)$$

Adotar-se-á para o estabelecimento dos Consumos Progressivos:

$$q = 156 l/hab.dia$$

Coeficiente do dia de maior consumo (k₁):

Relacionando-se o mês de máximo consumo com o valor médio mensal, obtém-se:

$$k_1 = \frac{95.299m^3}{79.538m^3} = 1{,}198$$

Normalmente, o valor referido e sugerido pela bibliografia é $k_1 = 1,20$. O k_1 deve ser o quociente entre a vazão no dia de maior consumo na semana, e o consumo médio semanal.

A partir das definições anteriores, monta-se a tabela de Consumos Progressivos:

ANO	POP.(hab)	POP.ATEND.(hab)		NDA(l/s)
			Média	dmc
1990	21.627	20.546	37	45
1991	22.709	21.574	39	47
1992	23.845	22.653	41	49
1993	25.038	23.787	43	52
1994	26.290	24.976	45	54
1995	27.605	26.225	47	56
1996	28.986	27.537	50	60
1997	30.436	28.915	52	63
1998	31.958	30.361	55	66
1999	33.556	31.879	58	70
2000	35.234	33.473	60	72
2001	36.820	34.979	63	76
2002	38.477	36.554	66	79
2003	40.209	38.199	69	83
2004	42.019	39.918	72	86
2005	43.910	41.715	75	90
2006	45.886	43.592	79	95
2007	47.951	45.554	82	98
2008	50.109	47.604	86	103
2009	52.364	49.740	90	108
2010	54.721	51.985	94	113
2011	56.910	54.065	98	118
2012	59.187	56.228	102	122
2013	61.555	58.477	106	127
2014	64.018	60.818	110	132
2015	66.579	63.250	114	137
2016	69.243	65.781	119	143
2017	72.013	68.413	124	149
2018	74.894	71.150	129	155
2019	77.890	73.996	134	161
2020	81.006	76.956	139	167
2021	84.247	80.035	145	174
2022	87.617	83.237	150	180
2023	91.122	86.566	156	187
2024	94.767	90.029	163	196
2025	98.558	93.630	169	203
2026	102.501	97.376	176	211

3. ADUÇÃO EM CONDUTOS FORÇADOS

Para os objetivos do curso, as adutoras serão classificadas em:

- Adutoras por gravidade;
- Adutoras por recalque.

A adutora por gravidade é aquela em que a única energia que se dispõe para a movimentação da água é a energia potencial determinada pelas diferenças de cotas dos extremos do conduto e expressa em termos de declividade piezométrica.

Já, na adutora por recalque, a energia necessária para a movimentação da água é fornecida eletro-mecanicamente.

3.1. MODELOS ADEQUADOS AO DIMENSIONAMENTO HIDRÁULICO

3.1.1. Fórmula Universal, ou de Darcy-Weisbach:

$$\Delta H = \frac{f * L * V^2}{D * 2g}$$

onde:

 ΔH = perda de carga linear, em m;

f = coeficiente de perda de carga, adimensional;

L = comprimento da tubulação, em m;

V = velocidade do líquido, em m/s;

D = diâmetro da tubulação, em m.

A fórmula de Swamee e Jain permite ótima aproximação no cálculo do valor de "f":

$$f = \frac{1,325}{\left[\ln\left(\frac{\epsilon}{3.7*D} + \frac{5,74}{\text{Re}^{0.9}}\right)\right]^2}$$

$$\mathbf{Re} = \frac{\mathbf{V} * \mathbf{D}}{\mathbf{v}}$$

onde:

 ε = rugosidade absoluta, em m;

 R_e = número de Reynolds, adimensional;

v = viscosidade cinemática, adotada 1,007 * 10⁻⁶ m²/s, a 20°C.

Os valores de rugosidade absoluta "ɛ" podem ser obtidos a partir das referências seguintes, em função do tipo de tubulação utilizada na instalação:

- Aço comercial novo = 4,5 * 10⁻⁵ m; - Aço ou ferro galvanizado = 1,5 * 10⁻³ m; - Ferro fundido novo = 2,5 a 5,0 * 10⁻⁴ m; - Ferro fundido velho = 3,0 a 5,0 * 10⁻³ m; - Ferro fundido revestido com cimento = 1,0 * 10⁻⁴ m; - Fibro cimento novo ($n\tilde{a}o$ mais usado) = 2,5 * 10⁻⁵ m; - Cobre, latão, aço revestido de epóxi, PVC = 1,5 * 10⁻⁶ m.

3.1.2. Fórmula de Hazen-Williams

$$\mathbf{Q} = 0.2785 * C * D^{2.63} * J^{0.54}$$

Onde:

 $Q = vazão, m^3/s;$

C = coeficiente adimensional;

D = diâmetro, m;

J = perda de carga unitária, m/m.

Com "J" determinado, calcula-se a perda de carga:

$$\Delta \mathbf{H} = J * L$$

Onde:

L = comprimento de tubulação, m.

Os valores de "C" podem ser obtidos das referências seguintes, em função do tipo de tubulação utilizada na instalação:

- PVC, aço revestido = 140 - Ferro fundido novo = 130 - Ferro fundido velho = 110

3.2. O CASO ESPECÍFICO DA ADUÇÃO POR GRAVIDADE

Exercício 1: uma adutora que opera como conduto forçado deve conduzir por gravidade 83 l/s, com um desnível de 20 m e com um comprimento de 2 km. Qual o diâmetro da adutora, considerando-se o material ferro fundido novo?

Solução:

Em geral, estes problemas oferecem rápida solução com a utilização da fórmula de Hazen - Williams:

Q = 0,2785 * C * D^{2,63} * J^{0,54} Isolando "D", tem-se:
$$D = \left(\frac{0,083}{0,2785*130*J^{0,54}}\right)^{0,38}$$

A perda de carga unitária "J" resulta da relação: $J = \frac{Hg}{L} = \frac{20m}{2.000m} = 0.01m/m$

Determinação do diâmetro:
$$D = \left(\frac{0,083}{0,2785*130*0,01^{0.54}}\right)^{0.38} = 0,255m$$

Pode-se adotar o diâmetro comercial mais próximo, no caso DN 250. Nesta hipótese, como DN 250 é menor que DN 255 (inexistente comercialmente), significa que a vazão efetiva será um pouco menor do que a nominal de projeto:

$$Q = 0.2785 * 130 * (0.25)^{2.63} * (0.01)^{0.54} = 0.0785 \text{ m}^3/\text{s} = 78.5 \text{ l/s}$$

No entanto, caso fosse imprescindível obter-se a vazão nominal de projeto, poder-se-ia utilizar dois diâmetros comerciais diferentes, DN 250 e DN 300, com o que se otimizaria a solução. Resultaria então:

a) Para DN 250:

$$J_1 = \left(\frac{0,083}{0,2785*130*0,25^{2,63}}\right)^{1,85} = 0,011 m/m$$

b) Para DN 300:

$$J_2 = \left(\frac{0,083}{0,2785*130*0,30^{2,63}}\right)^{1,85} = 0,00455m/m$$

Resolve-se uma equação simultânea de 1º grau a duas incógnitas:

$$L_1 + L_2 = 2.000 \text{ m}$$

$$J_1 * L_1 + J_2 * L_2 = 20 \text{ m}$$

$$L_2 = 2.000 - L_1$$

$$J_1 * L_1 + J_2 * (2.000 - L_1) = 20$$

$$J_1 * L_1 + 0.00455 * 2.000 - 0.00455 * L_1 = 20$$

$$0.011* L_1 + 9.1 - 0.00455 * L_1 = 20$$

$$0.00645 * L_1 = 20 - 9.1 = 10.9$$

$$0.00645 * L_1 = 10.9.$$

$$L_1 = \underbrace{10.9}_{0.00645} = 1.690 \text{ m}$$

$$0.00645$$

$$L_2 = 2.000 - L_1 = 2.000 - 1690 = 310 \text{ m}$$

Exercício 2: calcular o diâmetro de uma tubulação de ferro fundido novo, que deverá conduzir uma vazão de 79 l/s, sendo a diferença de nível entre o reservatório e o ponto de descarga igual a 7,20 m e o comprimento da tubulação 600 m. Utilizar a equação de Darcy-Weisbach, considerando a temperatura do líquido 20°C.

Solução: em problemas deste tipo, é necessário conhecer pelo menos duas incógnitas:

- D, Q > Calcula V e ΔH - D, ΔH > Calcula V e Q $-\Delta H$, Q > Calcula D e V $-\Delta H$, V > Calcula D e Q - V, Q > Calcula D e ΔH
- V, D > Calcula Q e ΔH

Neste caso, tem-se $\Delta H=7,20$ m e Q=79 l/s. Não sendo possível calcular o número de Reynolds, por ser desconhecida a velocidade, arbitra-se um valor para "f "e leva-se à equação da perda de carga, calculando D_1 e R_{e1} ; para R_{e1} , calcula-se novo "f" e novo "D". Quando não ocorrer mais variação nos valores de "f", significa que o diâmetro que o originou, com seu respectivo número de Reynolds, são os valores finais do cálculo.

$$\Delta H = \frac{f * L * V^2}{D * 2g}$$
 \therefore $\Delta H = \frac{0.0826 * f * L * Q^2}{D^5}$

Fixando $f_1 = 0.02$, calcula-se D_1 :

$$D_1 = \left\lceil \frac{0,0826 * f * L * Q^2}{\Delta H} \right\rceil^{1/5} = \left\lceil \frac{0,0826 * 0,02 * 600 * 0,079^2}{7,20} \right\rceil^{1/5} = 0,244 \text{ m}$$

Calcula-se Re1:

$$R_{el} = \frac{V * D_1}{v} = \frac{4 * Q * D_1}{\pi * D_1^2 * v} = \frac{4 * Q}{\pi * D_1 * v}$$

Considerando $v = 1,007 * 10^{-6} \text{ m}^2/\text{s} (20^{\circ}\text{C}), \text{ vem}$

$$R_{e1} = \underbrace{\frac{4 * 0,079}{\pi * 0,244 * 1,007 * 10^{-6}}}_{\text{= }} = 409.371$$

Calcula-se um novo "f₂", utilizando a equação já mencionada de Swamee e Jain, adequada à questão.

$$f_2 = \frac{1,325}{\left[\ln\left(\frac{2,5*10^{-4}}{3,7*0,244} + \frac{5,74}{409.371^{0.9}}\right)\right]^2} = 0,0206$$

Calcula-se um novo D₂:
$$D_2 = \left[\frac{0.0826 * 0.0206 * 600 * (0.079)^2}{7.20} \right]^{1/5} = 0.245 \text{ m}$$

Calcula-se um novo Re₂:
$$R_{e^2} = \frac{4*0,079}{\pi*0,245*1,007*10^{-6}} = 407.701$$

Calcula-se um novo "f₃":
$$f_3 = \frac{1,325}{\left[\ln\left(\frac{2,5*10^{-4}}{3,7*0,245} + \frac{5,74}{407.701^{0.9}}\right)\right]^2} = 0,0206$$

Como " f_2 " \approx " f_3 ", OK. Interrompe o processo interativo e adota DN 250.

IMPORTANTE: Para o diâmetro definido, deve ser verificada a velocidade, que para escoamento por bombeamento deverá ficar compreendida entre:

$$0.60 \le V \le 3.0 \text{ m/s}$$

3.3. O CASO ESPECÍFICO DA ADUÇÃO POR RECALQUE

3.3.1. Considerações gerais

A definição do diâmetro de uma adutora por recalque, ocorre mediante o desenvolvimento de um estudo técnico - econômico para diâmetros comerciais que se situem no entorno daquele definido pela expressão de Bresse:

$$\mathbf{D} = \mathbf{K} \sqrt{Q}$$

Onde:

D = diâmetro estimado, em m;

Q = vazão aduzida, em m³/s;

K = coeficiente de Bresse, adotado na prática no intervalo 0,8 - 1,7.

Os diâmetros selecionados com base na equação de Bresse, devem ser verificados para os limites de velocidade impostos pela NBR-12208, que são:

$$0.60 \le V \le 3.0 \text{ m/s}$$

Os diâmetros que não satisfizerem essa condição devem ser retirados da análise.

3.3.2. Aspectos econômicos das soluções

As séries financeiras de investimentos e custos operacionais, podem ser homogeneizadas pelo método do Valor Presente, fundamentado na expressão:

$$\mathbf{F_{vp}} = \frac{1}{\left(1+i\right)^n}$$

Onde:

 F_{vp} = fator de valor presente;

i = taxa de desconto ou custo de oportunidade de capital (adotado presentemente como sendo 12 % a.a., segundo orientação da CEF);

n = número de anos ao longo do alcance do projeto.

Com o fator, calcula-se o valor atualizado dos investimentos e dos custos operacionais:

$$\mathbf{P} = F_{vp} * S$$

Onde:

P = capital inicial atualizado (valor presente);

S = valor que atinge "P", depois de "n" anos ao interesse composto "i".

3.3.3. Aspectos técnicos das soluções

O estudo técnico das soluções cabíveis, passa pela definição dos seguintes parâmetros:

Hg = desnível geométrico de recalque (mínimo e máximo), em m;

 h_s = perdas de carga singulares ou localizadas, que podem ser estimadas a partir da expressão:

$$\mathbf{h}\mathbf{s} = \frac{\mathbf{k} * \mathbf{v}^2}{2\mathbf{g}}$$

onde:

v = velocidade de escoamento do líquido, em m/s;

k = coeficiente de perda, adotado no intervalo 5 - 15, nos projetos desenvolvidos no RS.

 h_l = perdas de carga lineares, que podem ser estabelecidas a partir das equações Universal ou Hazen-Williams já referidas.

De posse destes parâmetros, é possível calcular-se as perdas de carga totais e as respectivas alturas manométricas de recalque:

$$\mathbf{h_T} = \mathbf{h_s} + \mathbf{h_l}$$

Onde:

 h_T = perda de carga total, em m;

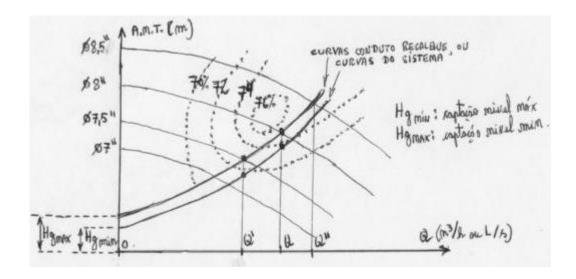
$$\mathbf{AMT} = \mathbf{Hg} + \mathbf{h_T}$$

Onde:

AMT = altura manométrica de recalque, em mca.

É possível, a este ponto, estabelecer-se as curvas do sistema hidráulico de recalque (ou curva do conduto de recalque). Tais curvas podem ter o seu traçado facilitado pela montagem de um quadro do tipo seguinte:

	Perdas si h _s (_	Perdas lineares h ₁ (m)		Perda total	AMT (Hg	(m) + h _T)
Q(1/s)					$h_{T}(m)$		
	V (m/s)	h _s (m)	J (m/m)	h _l (m)		Mín.	Máx.
Q'							
Q							
Q"							


No quadro, as vazões representam:

Q = vazão de projeto, ou vazão nominal;

Q'= vazão inferior à vazão de projeto;

Q''= vazão superior à vazão de projeto.

Com isto, obtém-se um conjunto de curvas do seguinte tipo:

Com essas curvas, procura-se em catálogos de fabricantes, equipamentos que sejam compatíveis com as condições hidráulicas previamente estabelecidas. Lançam-se essas curvas sobre as curvas de "performance" do equipamento compatível escolhido, obtendo-se os rendimentos das bombas. Calcula-se, a seguir, as potências consumidas para as condições de projeto, através da equação:

$$\mathbf{P} = \frac{\gamma * Q * AMT}{75 * \eta}$$

Onde:

P = potência consumida pelo conjunto motor-bomba, em cv. (1 CV = 0,986 HP)

 γ = peso específico do líquido aduzido, 1.000 kg/m³ no caso da água.

Q = vazão, em m³/s;

AMT = altura manométrica total, em m;

 η = rendimento do conjunto motor-bomba; (η = $\eta_M * \eta_B$)

75 = fator de conversão de kgm/s para cv.

Para as potências assim definidas, devem ser previstas as seguintes folgas:

Potência consumida (cv)	Acréscimo de potência
Até 2	50 %
2 a 5	30 %
5 a 10	20 %
10 a 20	15 %
Maior que 20	10 %

Essas folgas compensam o "déficit" determinado pelo rendimento dos motores. O quadro seguinte permite a avaliação do rendimento dos motores em função da potência instalada das bombas:

Potência da bomba (cv)	Rendimento do motor
1	72
2	75
5	81
10	84
20	86
30	87
50	88

As potências de placa dos motores podem ser estabelecidas a partir dos seguintes valores, existentes a nível comercial (em cv):

1/4, 1/3, 1/2, 3/4, 1, 1 1/2, 2, 3, 5, 6, 7 1/2, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 60, 80, 100, 125 e 150; potências de placa maiores são obtidas sob encomenda.

3.3.4. Estimativa de investimentos e custos operacionais anuais

Neste estágio do trabalho, torna-se necessária a avaliação dos valores dos investimentos e custos operacionais anuais.

Os investimentos compreendem:

- Obras civis na estação elevatória e na execução da tubulação;
- Instalações elétricas e equipamentos eletro-mecânicos;
- Custo da tubulação.

Os custos operacionais compreendem:

- Gastos anuais com energia elétrica;
- Despesas com pessoal de operação e manutenção;
- Reposição de peças e eventuais.

Os gastos anuais com energia elétrica são avaliados a partir da expressão:

GAEE =
$$E_d * 12 * C_d + E_c * T * 365 * C_c$$

Onde:

GAEE = gasto anual com energia elétrica, em R\$;

 E_d = energia de demanda, em kw;

C_d = custo da energia de demanda, em R\$/kW.mes;

 E_c = energia de consumo, em kw;

T = número de horas de funcionamento por dia;

365 = número de dias do ano;

C_c = custo da energia de consumo, em R\$/kW.h.

3.3.5. Análise do diâmetro econômico

De posse de todas as componentes de investimentos e custos operacionais, monta-se um quadro do seguinte tipo:

	QUADRO RESUMO DE CUSTOS – VALORES ATUALIZADOS (R\$)									
			Custos Operacionai	is Anuais						
Ano	Investimento	GAEE	Pessoal Operação	Outros	Total	Fvp	Valor			
			e Manutenção			_	Presente			
'	Somatório dos valores presentes									

O menor somatório de valores presentes, aponta para o diâmetro que técnicaeconomicamente apresenta a melhor "performance", devendo assim ser escolhido dentre as hipóteses em estudo.

No desenvolvimento da avaliação dos GAEE, auxilia a montagem de uma planilha semelhante a seguinte:

GA	GASTO ANUAL COM ENERGIA ELÉTRICA (GAEE) (R\$)								
Ano	Ano Nº. horas Gasto energia de Gasto energia de Total ^(*)								
	funcionamento	demanda	consumo						

^{1&}lt;sup>(*)</sup> Os valores desta coluna devem ser lançados na 3^a coluna da tabela acima.

Exemplo:

Estudar o diâmetro econômico de uma adutora de água bruta, para atendimento das seguintes condições, admitindo o horizonte de projeto de 10 anos:

Q = 40 l/s ; Hgmin = 35 m L = 1.500 m ; Hgmax = 37 m

a) Diâmetros a estudar:

Adotando-se um "k" de Bresse igual a 1,0, resulta (k costuma ir de 0,8 até 1,7):

$$D = k \sqrt{Q} = 1.0 \sqrt{0.040} = 0.200 \text{ m}$$

Admitindo-se a utilização de ferro fundido novo, os diâmetros a estudar seriam, com as respectivas velocidades de escoamento do líquido:

$$\begin{split} &D_1 = 150 \text{ mm , } v = Q/A = &2,26 \text{ m/s} \\ &D_2 = 200 \text{ mm , } v = 1,27 \text{ m/s} \\ &D_3 = 250 \text{ mm , } v = 0,81 \text{ m/s} \end{split}$$

b) Curvas do sistema:

Para o traçado das curvas do sistema hidráulico, serão utilizadas as vazões auxiliares de 30 e 50 l/s, no entorno da vazão de projeto, que é 40 l/s. Os quadros seguintes representam as curvas referidas, para cada diâmetro a estudar.

Para DN 150:

Q	Q	h _s (1	n) h _L (m)		h _T (m)	AM	T (m)	
(L/s)	(m^3/h)					$= h_s + h_L$		
		V (m/s)	h _s (m)	J (m/m)	$h_{L}(m)$		Mín.	Máx.
108	30	1,70	1,47	0,020223	30,33	31,80	66,80	68,80
144	40	2,26	2,60	0,034463	51,69	54,29	89,29	91,29
180	50	2,83	4,08	0,052098	78,15	82,23	117,23	119,23

Para DN 200:

Q	Q	h _s (1	m)	h _L (m)		h _T (m)	AM'	T (m)
(L/s)	(m^3/h)					$= h_s + h_L$		
		V (m/s)	h _s (m)	J (m/m)	$h_{L}(m)$		Mín.	Máx.
108	30	0,95	0,46	0,004983	7,47	7,93	42,93	44,93
144	40	1,27	0,82	0,008489	12,73	13,55	48,55	50,55
180	50	1,59	1,29	0,012833	19,25	20,54	55,54	57,54

Para DN 250:

Q	Q	h _s (1	m)) h _L (m)		h _T (m)	AM	Γ (m)
(L/s)	(m^3/h)					$= h_s + h_L$		
		V (m/s)	h _s (m)	J (m/m)	$h_{L}(m)$		Mín.	Máx.
108	30	0,61	0,19	0,001681	2,52	2,71	37,71	39,71
144	40	0,81	0,33	0,002863	4,29	4,62	39,62	41,62
180	50	1,02	0,53	0,004328	6,49	7,02	42,02	44,02

Obs.: Adotou-se k = 10 no cálculo das perdas localizadas.

c) Bombas compatíveis:

Para as curvas do sistema, selecionaram-se as bombas cujas <u>curvas de "performance" são representadas nas páginas 28 até 30</u>, nas quais as curvas do sistema estão lançadas sobre as curvas das bombas.

d) Cálculo das potências consumidas e instaladas:

Das curvas - sistema/bomba - retira-se o rendimento do equipamento para o ponto de projeto P_1 . O ponto P_2 é definido graficamente a partir da escolha do rotor, obtendo-se assim de forma gráfica a AMT, a Q e o η correspondentes. Resultam as potências:

Para DN 150:

$$P_1 = \underline{1.000 * 91,29 * 0,040} = 69,95 \text{ cv}$$

$$75 * 0.696$$

Professor Turma A: Gino Gehling

$$P_2 = 1.000 * 91,00 * 0,04097 = 71,84 \text{ cv}$$

 $75 * 0,692$

Para DN 200:

$$P_1 = \frac{1.000 * 50,55 * 0,040}{75 * 0,77} = 35 \text{ cv}$$

$$P_2 = 1.000 * 49,50 * 0,04222 = 36,28 \text{ cv}$$

75 * 0,77

Para DN 250:

$$P_1 = \frac{1.000 * 41,62 * 0,040}{75 * 0.77} = 28,83 \text{ cv}$$

$$P_2 = \frac{1.000 * 39,80 * 0,04139}{75 * 0,755} = 30,42 \text{ cv}$$

O quadro seguinte mostra as potências consumidas para a condição mais crítica, e as potências de motores instaladas.

	Potência o	consumida	Potência i	nstalada ^(*)
Diâmetro(mm)	cv	kW	cv	kW
150	71,84	52,9	80	58,9
200	36,28	26,7	40	29,4
250	30,42	22,4	35	25,7

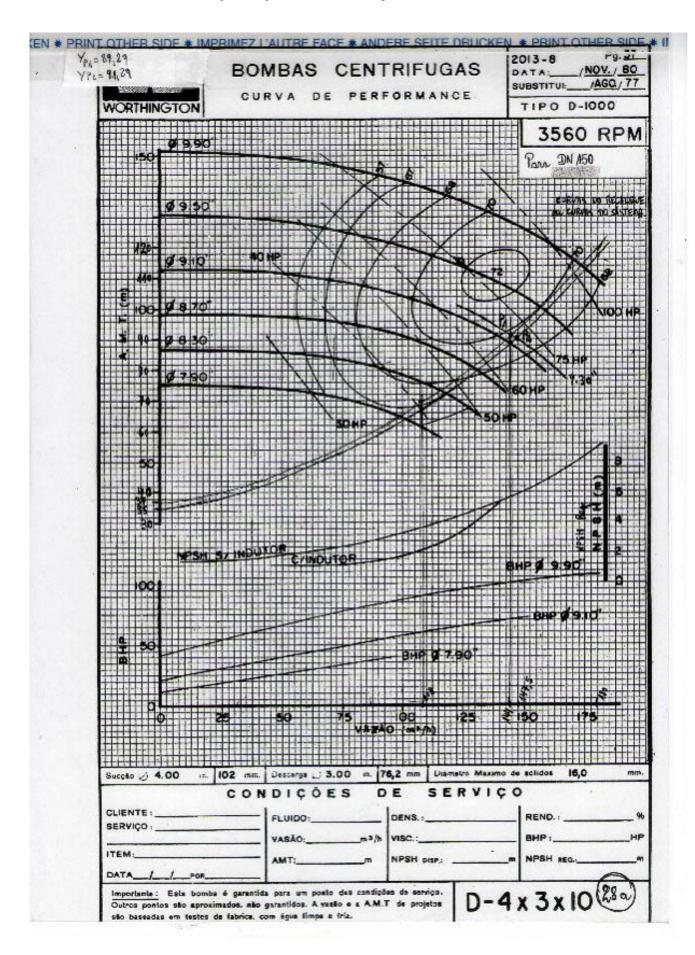
^{(*):} As folgas em cv são obtidas na tabela da página 24.

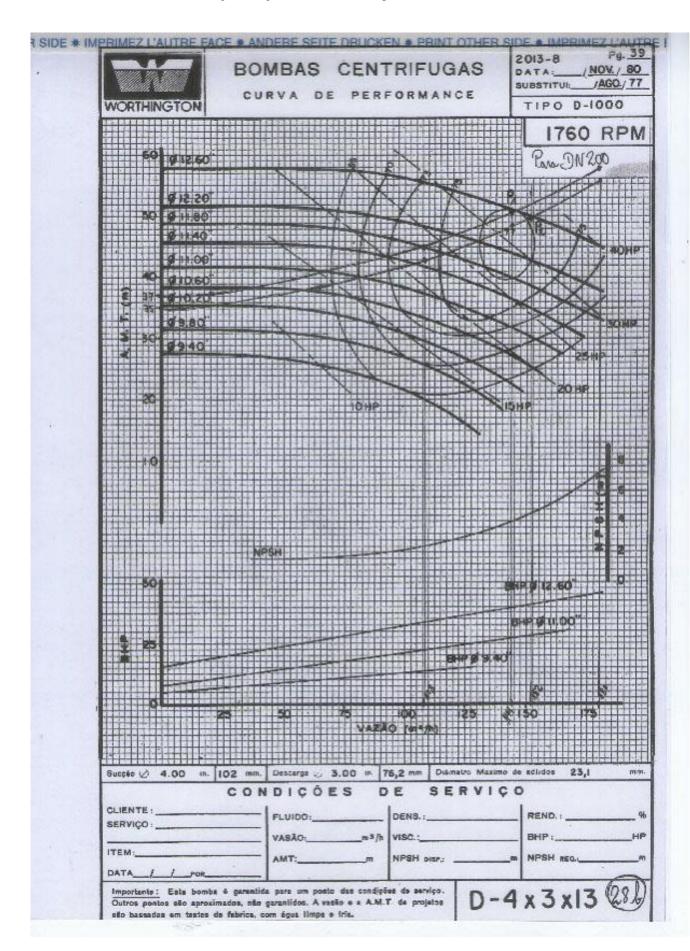
Obs.: 1 cv = 0.736 kW.

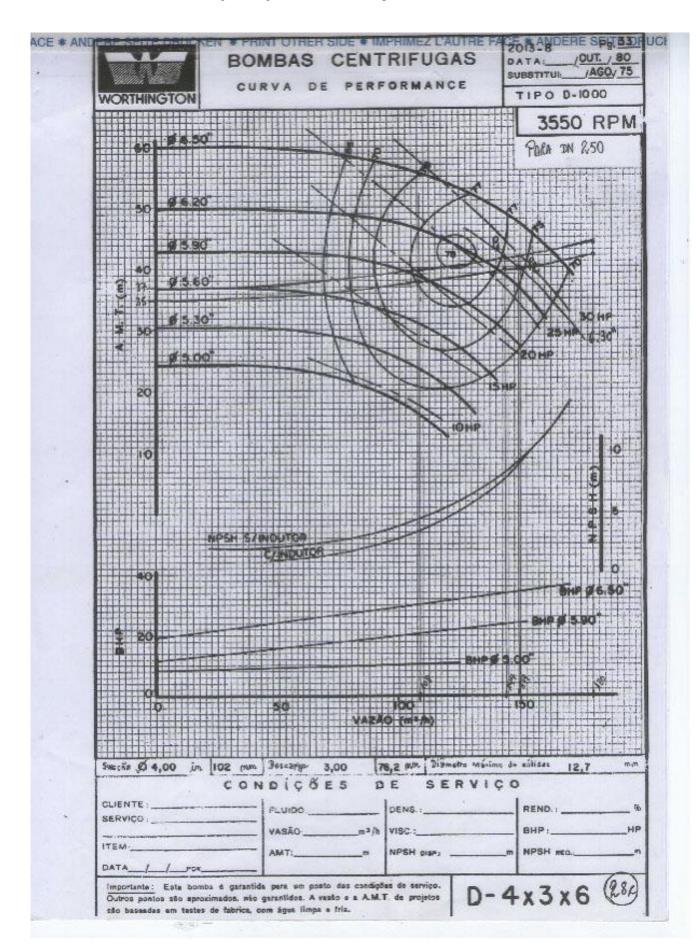
e) Estimativa dos investimentos e custos operacionais:

e.1) Investimentos:

Para o problema em estudo, estabeleceram-se os valores constantes do quadro seguinte (valores hipotéticos):


Investimentos(R\$)									
Diâmetro(mm)	Obras Civis	Inst.Eletromecânicas	Tubulação	Total					
		e Equipamentos							
150	90.000	200.000	830.000	1.120.000					
200	75.000	150.000	975.000	1.200.000					
250	50.000	100.000	1.250.000	1.400.000					


e.2) Custos operacionais:


Fixou-se o alcance de projeto em 10 anos (dado do problema). Como medida simplificativa, admitiu-se como custos operacionais somente as despesas com energia elétrica. Para o cálculo desses gastos, utilizou-se:

- Custo da energia de demanda: $R\$ 46,456 / kw.mês;
- Custo da energia de consumo: R\$ 0,516452 / kw.hora.

Os <u>quadros das páginas 31 até 33</u> reproduzem esses gastos, para cada diâmetro estudado.

		GAEE (R\$)			
Ano	Nº. horas de	Gasto energia de	Gasto energia de	Total	
	funcionamento/dia	demanda	consumo		
1	11	32.835	109.691	142.526	
2	12	32.835	119.663	152.498	
3	13	32.835	129.635	162.470	
4	14	32.835	139.607	172.442	
5	15	32.835	149.579	182.414	
6	16	32.835	159.551	192.386	
7	17	32.835	169.523	202.358	
8	18	32.835	179.494	212.329	
9	19	32.835	189.466	222.301	
10	20	32.835	199.438	232.273	
11	20	"	"	"	
12	20	"	"	"	
13	20	46	"	"	
14	20	"	"	"	
15	20	"	"	"	
16	20	46	"	"	
17	20	"	"	"	
18	20	"	"	"	
19	20	46	"	"	
20	20	"	"	"	
21	20	"	"	"	
22	20	"	"	"	
23	20	"	"	"	
24	20	46	"	"	
25	20	46	"	"	
26	20	"	"	"	
27	20	"	"	"	
28	20	66	"	"	
29	20	44	"	"	
30	20	46	"	"	

Origem para os dados numéricos do ano 1:

Gastos en. demanda = R\$ 46,456/kW.mes * 58,9 kW * 12meses/ano = R\$ **32.835/ano**

Gastos en. cons.= R\$ 0,516452/kW.h* 52,9 kW* 11 h/d* 365 d/ano = **R\$ 109.691/ano**

Obs: As potencias instalada (58,9) e consumida (52,9) são obtidas na primeira tabela apresentada na pág. 26.

		GAEE (R\$)		
Ano	Nº. horas de	Gasto energia de	Gasto energia de	Total
	funcionamento/dia	demanda	consumo	
1	11	16.390	55.364	71.754
2	12	16.390	60.397	76.787
3	13	16.390	65.430	81.820
4	14	16.390	70.463	86.853
5	15	16.390	75.496	91.886
6	16	16.390	80.529	96.919
7	17	16.390	85.562	101.952
8	18	16.390	90.596	106.986
9	19	16.390	95.629	112.019
10	20	16.390	100.662	117.052
11	20	"	"	"
12	20	"	"	"
13	20	"	"	"
14	20	"	"	"
15	20	"	"	"
16	20	"	"	"
17	20	"	"	"
18	20	"	"	"
19	20	46	"	"
20	20	"	"	"
21	20	"	"	"
22	20	"	"	
23	20	"		"
24	20	"		"
25	20	46	"	"
26	20	"	"	"
27	20	"	"	"
28	20	"	"	"
29	20	44	"	"
30	20	"	"	"

Origem para os dados numéricos do ano 1:

Gastos en. Demanda = R\$ 46,456/kW.mes* 29,4 kW* 12meses/ano= **R\$ 16.390,00/ano**Gastos en. cons. = R\$ 0,516452/kW.h* 26,7 kW* 11 h/d* 365 d/ano= **R\$ 53.364,00ano**

Obs: As potencias instalada (58,9) e consumida (52,9) são obtidas na primeira tabela apresentada na pág. 26.

		GAEE (R\$)			
Ano	Nº. horas de	Gasto energia de	Gasto energia de	Total	
	funcionamento/dia	demanda	consumo		
1	11	14.327	46.448	60.775	
2	12	14.327	50.670	64.997	
3	13	14.327	54.893	69.220	
4	14	14.327	59.115	73.442	
5	15	14.327	63.338	77.665	
6	16	14.327	67.560	81.887	
7	17	14.327	71.783	86.110	
8	18	14.327	76.005	90.332	
9	19	14.327	80.228	94.555	
10	20	14.327	84.450	98.777	
11	20	"	"	"	
12	20	"	"	٠,	
13	20	"	"	66	
14	20	"	"	66	
15	20	"	"	٠,	
16	20	"	"	"	
17	20	٠,		"	
18	20	"	"	"	
19	20	"	"	"	
20	20	"	"	66	
21	20	"	"	"	
22	20	"	"	66	
23	20	٠,		"	
24	20	"	"	"	
25	20	"	"	"	
26	20	"	"	66	
27	20	"	"	66	
28	20	"	"	66	
29	20	"	"	44	
30	20	"	"	"	

Origem para os dados numéricos para o ano 1:

Gastos en. demanda = R\$ 46,456/kW.mes * 25,7 kW * 12meses/ano = **R\$ 14.327/ano**Gastos en. cons.=R\$ 0,516452/kW.h* 22,4 kW* 11 h/d* 365d/ano= **R\$ 46.448,00 /ano**

Obs: As potencias instalada (58,9) e consumida (52,9) são obtidas na primeira tabela apresentada na pág. 26.

f) Comparativo econômico:

Os quadros seguintes sintetizam os resultados obtidos, fornecendo os valores atualizados de investimentos mais custos operacionais, para cada diâmetro estudado.

Para DN 150

QUADRO RESUMO DE CUSTOS – VALORES ATUALIZADOS (R\$)					
Ano	Investimento	GAEE	Total	Fvp	Valor Presente
0	1.120.000	-	1.120.000	1,0000	1.120.000
1		142.526	142.526	0,8929	127.261
2		152.498	152.498	0,7972	121.571
3		162.470	162.470	0,7118	115.646
4		172.442	172.442	0,6355	109.587
5		182.414	182.414	0,5674	103.502
6		192.386	192.386	0,5066	97.463
7		202.358	202.358	0,4523	91.527
8		212.329	212.329	0,4039	85.760
9		222.301	222.301	0,3606	80.162
10		232.273	232.273	0,3220	74.792
11		"	"	0,2875	66.778
12		"	"	0,2567	59.624
13		"	"	0,2292	53.237
14		"	"	0,2046	47.523
15		66	دد	0,1827	42.436
16		66	"	0,1631	37.884
17		"	"	0,1456	33.819
18		66	دد	0,1300	30.195
19		66	"	0,1161	26.967
20		"	"	0,1037	24.087
21		66	"	0,0926	21.508
22		66	"	0,0826	19.186
23		66	"	0,0738	17.142
24		"	"	0,0659	15.307
25		"	"	0,0588	13.658
26		"	"	0,0525	12.194
27		"	"	0,0469	10.894
28		"	"	0,0419	9.732
29		"	"	0,0374	8.687
30		"	"	0,0334	7.758
Somatório dos Valores Presentes					2.685.887

QUADRO RESUMO DE CUSTOS – VALORES ATUALIZADOS (R\$)					
Ano	Investimento	GAEE	Total	Fvp	Valor Presente
0	1.200.000	•	1.200.000	1,0000	1.200.000
1		71.754	71.754	0,8929	64.069
2		76.787	76.787	0,7972	61.215
3		81.820	81.820	0,7118	58.240
4		86.853	86.853	0,6355	55.195
5		91.886	91.886	0,5674	52.136
6		96.919	96.919	0,5066	49.099
7		101.952	101.952	0,4523	46.113
8		106.986	106.986	0,4039	43.211
9		112.019	112.019	0,3606	40.394
10		117.052	117.052	0,3220	37.691
11		"	"	0,2875	33.652
12		"	دد	0,2567	30.047
13		"	"	0,2292	26.828
14		"	"	0,2046	23.949
15		"	"	0,1827	21.385
16		"	"	0,1631	19.091
17		"	دد	0,1456	17.043
18		"	دد	0,1300	15.217
19		"	"	0,1161	13.590
20		"	"	0,1037	12.138
21		"	"	0,0926	10.839
22		"	"	0,0826	9.668
23		"	"	0,0738	8.638
24		"	"	0,0659	7.714
25		"	"	0,0588	6.883
26		"	"	0,0525	6.145
27		"	"	0,0469	5.490
28		"	"	0,0419	4.904
29		"	"	0,0374	4.378
30	3.910				
	Somatório dos Valores Presentes				

Para DN 250

QUADRO RESUMO DE CUSTOS – VALORES ATUALIZADOS (R\$)					
Ano	Investimento	GAEE	Total	Fvp	Valor Presente
0	1.400.000	-	1.400.000	1,0000	1.400.000
1		60.775	60.775	0,8929	54.266
2		64.997	64.997	0,7972	51.816
3		69.220	69.220	0,7118	49.271
4		73.442	73.442	0,6355	46.672
5		77.665	77.665	0,5674	44.067
6		81.887	81.887	0,5066	41.484
7		86.110	86.110	0,4523	38.948
8		90.332	90.332	0,4039	36.485
9		94.555	94.555	0,3606	34.097
10		98.777	98.777	0,3220	31.806
11		"	"	0,2875	28.398
12		"	"	0,2567	25.356
13		"	"	0,2292	22.640
14		"	"	0,2046	20.210
15		"	"	0,1827	18.047
16		"	"	0,1631	16.111
17		"	"	0,1456	14.382
18		"	"	0,1300	12.841
19		"	"	0,1161	11.468
20		"	"	0,1037	10.243
21		"	"	0,0926	9.147
22		"	"	0,0826	8.159
23		"	"	0,0738	7.290
24		"	"	0,0659	6.509
25		"	"	0,0588	5.808
26		"	"	0,0525	5.186
27		66	"	0,0469	4.633
28		"	"	0,0419	4.139
29		"	"	0,0374	3.694
30		"	"	0,0334	3.299
Somatório dos Valores Presentes					2.061.472

Conclusão:

Dos quadros anteriores retira-se o diâmetro econômico. **Para o caso em pauta, corresponde ao DN 200.**

Considerações relativas à localização de ventosas, registros de parada e de descarga em condutos forçados

- A) **Enchimento de adutoras**: deve ser lento e gradual, com velocidades máximas de 0,3 m/s, para evitar transientes. A ocorrência de um bloqueio do enchimento, por pequena ou nula expulsão de ar, causa sobre-pressões da ordem de 100xV: 100 x 0,3 m/s = 30 m.c.a. Um enchimento satisfatório supõe ventosas (*válvulas para expulsão e/ou ingresso de ar*) bem situadas e dimensionadas.
- B) **Bloqueio de adutoras**: é causado por ar confinado nos colos altos (**figuras I** e **II**), devido à ventosa inoperante ou inexistente. Pode ocorrer que mesmo havendo carga, não haja escoamento. **Na figura I** tem-se as situações de equilíbrio e de escoamento:

Equilíbrio (bloqueio): $h_1 + h_2 = h_3$. Escoamento: $h_1 + h_2 \rangle h_3$, para qualquer carga $_{0.}$

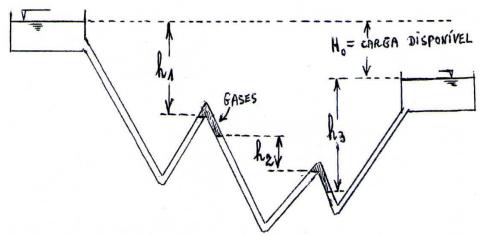


Figura I: bloqueio em uma adutora por gravidade.

Na figura II tem-se as seguintes situações para o equilíbrio (bloqueio) e o escoamento:

Equilíbrio (bloqueio): $H_s + h_2 = h_1 + h_3 + h_4$. Escoamento: $H_s + h_2 \rangle h_1 + h_3 + h_4$

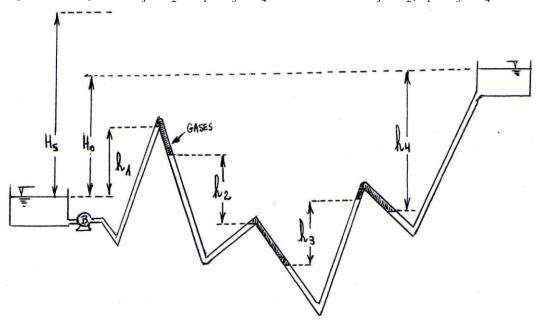


Figura II: Bloqueio em uma adutora por recalque.

C) Processos para remoção de ar em adutoras

C-1) Remoção hidráulica de ar: O ar é arrastado sempre que a velocidade de escoamento superar a velocidade crítica, dada pela expressão de Kent:

$$Vc = 1,36\sqrt{g \bullet D \bullet Sen\theta}$$

onde: V_c= vel. crítica (m/s);

g = acel. da gravidade (m/s²)

D = diam. do tubo (m);

 θ = ângulo do tubo com a horizontal, a jusante do colo alto, em graus.

- C-2) Remoção mecânica de ar: é feito por ventosas (*válvulas para expulsão de ar*). A ventosa é dimensionada par a lenta velocidade de enchimento da linha (0,3 m/s). A vazão de entrada de água no conduto deve ser igual a vazão de saída de ar pela ventosa.
- D) Tipos de ventosas: podem ser simples ou duplas (figuras III e IV, respectivamente).

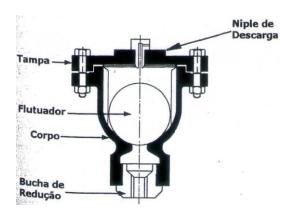


Figura III: ventosa simples (Tsutyia, M.T., 2006).

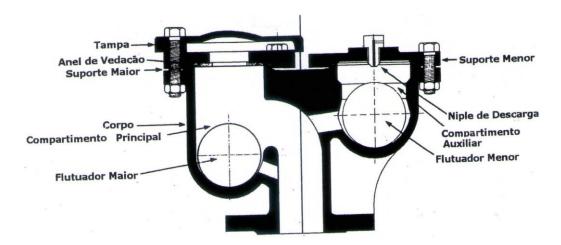


Figura IV: ventosa dupla (Tsutyia, M.T., 2006).

E) Dimensões para registros de descarga: o dimensionamento da descarga consiste em estabelecer o diâmetro para o registro e para a linha de descarga, que usualmente são os mesmos. A **figura V** apresenta uma câmara para alojamento de um registro de descarga de 100mm que serve a uma adutora de 300mm.

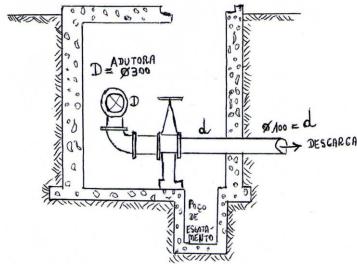


Figura V: Câmara para registro de descarga.

Por vezes, no dimensionamento de registros de descarga, adota-se um método expedito, proposto por Azevedo Netto, para dimensionar o diâmetro da descarga (d):

$$\frac{D}{d} \ge \frac{6}{1}$$

O tempo para drenar os trechos de adutoras (**figura VI**) deve ser de até quatro horas. O modelo de Koelle (1998) consiste na utilização das fórmulas abaixo.

$$\frac{D}{d} = 65\sqrt{\frac{T\sqrt{Z_m}}{L}} \qquad V_1 = 2,5\sqrt{Z_{m\acute{a}x}} \left(\frac{d}{D}\right)^2 \quad V_2 = 1,25\sqrt{Z_{min}} \left(\frac{d}{D}\right)^2$$

onde: D,d: (m);

T: tempo esvaziamento, em horas (h);

Z_m: carga média dos valores de Z₁ e Z₂, em metros (m);

L: extensão entre pontos altos, em metros (m);

 $Z_{máx}$ = carga máxima de Z_1 , Z_2 , em metros (m);

 Z_{min} = carga mínima de Z_1 , Z_2 , em metros (m)

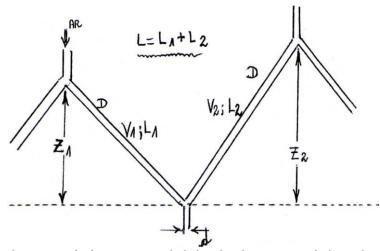


Figura VI: dimensionamento de descarga em colo baixo de adutora, com admissão de ar nos colos altos.

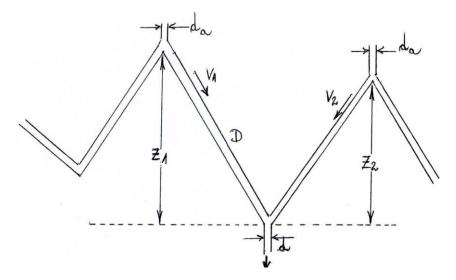


Figura VII: dimensionamento de válvula de admissão de ar nos colos altos de adutoras.

F) Dimensões de válvulas de admissão de ar: o diâmetro das mesmas (da) é dado por:

$$d_a = 0.21 \bullet (Z)^{1/4} d$$
 (Vide figura VII)

onde:

da = diam. da admissão de ar, em metros;

d = diam. da descarga, em metros;

Z = máximo valor de Z_1 e Z_2 , em metros

Por vezes é adotado método expedito, pelo qual concebe-se a válvula de admissão de ar com uma seção maior ou igual a 12,5% da seção do tubo, ou seja, a válvula teria pelo menos 1/8 do diâmetro da adutora a que serve.

Quando em um mesmo ponto há necessidade de válvula de expulsão de ar (d_1) e válvula de admissão de ar (d_2) , utiliza-se válvulas de dupla função.

3.3.6. Associação de bombas em paralelo

A associação de bombas em paralelo é uma situação relativamente comum adotada para a ampliar a capacidade de bombeamento de uma estação de recalque, sem que haja necessidade de ampliação das obras civis.

Duas ou mais bombas trabalham em paralelo quando recalcam para uma tubulação comum, de modo que cada uma contribua com parcela da vazão total para a mesma altura manométrica. Quando uma só bomba opera, a altura manométrica é AMT_0 ; quando duas bombas operam a altura é AMT_1 . A vazão total do sistema é menor que a soma das vazões das bombas operando isoladamente, e a potência consumida na associação é igual à soma das potências individuais.

(**Obs**: Figuras e textos complementares serão distribuídos em 2 páginas avulsas)

Assim, supondo-se uma associação de duas bombas hidráulicas iguais, A e B, a título de exemplo, pode-se escrever:

Para cada bomba, ter-se-á:

$$P_{A} = \underline{\gamma \cdot Q_{A} \cdot AMT_{A}} \qquad \qquad P_{B} = \underline{\gamma \cdot Q_{B} \cdot AMT_{B}}$$

$$75 \cdot \eta_{A} \qquad \qquad 75 \cdot \eta_{B}$$

Para o conjunto em paralelo, ter-se-á:

$$P_{ass} = P_A + P_B$$

Resulta assim:

$$\frac{\gamma \cdot Q_{ass} \cdot AMT_{ass}}{75 \cdot \eta_{ass}} = \frac{\gamma \cdot Q_A \cdot AMT_A}{75 \cdot \eta_A} + \frac{\gamma \cdot Q_B \cdot AMT_B}{75 \cdot \eta_B}$$

Como o peso específico " γ " é constante, ele pode ser eliminado da equação anterior, e ainda dependendo do tipo de associação, a equação pode ser simplificada para explicitar o rendimento da associação. No caso de uma associação em paralelo, as bombas vão experimentar o mesmo diferencial de pressões, portanto $AMT_{ass} = AMT_A = AMT_B$, e a

pressão pode ser eliminada da equação fornecendo a equação do rendimento para uma associação em paralelo de duas bombas:

$$\eta_{ass} = \underline{Q_{ass.}(\eta_{A}.\eta_{B})}$$
$$\eta_{A}.Q_{B} + \eta_{B}.Q_{A}$$

A generalização para qualquer número de bombas é imediata, seguindo o mesmo raciocínio. Sugere-se que tentem deduzir a expressão equivalente à acima, para um arranjo de três bombas iguais em paralelo.

1. Exercício

Definir o rotor necessário para cobrir a vazão de 350 l/s, por um tubo de ferro fundido de DN 600, sabendo que o equipamento utilizado é Worthington D-10x8x13, tipo D-1000, e que operarão duas bombas em paralelo e uma de reserva (3 grupos). Considerar:

$$\begin{split} Q &= 0,\!2785.C.D^{2,63}.J^{0,54},\,com\;C = 130\\ h_l &= J\;.\;L\\ h_s &= kv^2/2g,\,com\;k = 10\\ L &= 2.000\;m,\,Hgm\text{\'in} = 28\;m\;e\;Hgm\text{\'ax} = 30\;m \end{split}$$

Solução:

a) Curvas do sistema, ou curvas do recalque:

Q	Q	V	J	h_s	h_1	ht	AMT (m)		
(1/s)	(m^3/h)	(m/s)	(m/m)	(m)	(m)	(m)	Máx.	Mín.	
300	1080	1,06	0,0016918	0,57	3,36	3,93	33,93	31,93	
350	1260	1,23	0,0022501	0,78	4,47	5,25	35,25	33,25	
400	1440	1,41	0,0028807	1,01	5,73	6,74	36,74	34,74	

b) Interpretação dos resultados:

- b.1) O rotor escolhido foi o de 11,80";
- b.2) Para duas bombas operando em paralelo, obteve-se:

$$P'_1 \implies Q = 1.260 \text{ m}^3/\text{h} = 350 \text{ l/s}$$

 $P'_2 \implies Q = 1.345 \text{ m}^3/\text{h} = 374 \text{ l/s}$

b.3) Para duas bombas operando em paralelo, cada uma fornece:

$$P"_1 \implies Q = 630 \text{ m}^3/\text{h} = 175 \text{ l/s}$$

 $P"_2 \implies Q = 673 \text{ m}^3/\text{h} = 187 \text{ l/s}$

b.4) Para uma única bomba funcionando, sob o rotor 11,80", obteve-se:

$$P_1 \implies Q = 760 \text{ m}^3/\text{h} = 211 \text{ l/s}$$

 $P_2 \implies Q = 800 \text{ m}^3/\text{h} = 222 \text{ l/s}$

b.5) Para uma única bomba operando, P₂ sendo o ponto menos favorável, o rendimento da bomba será:

$$\eta = 82 \%$$

b.6) A potência consumida por uma única bomba, operando em P2, será:

$$P = \gamma \cdot Q \cdot AMT = 1.000 \cdot 0.222 \cdot 30.50 = 110 \text{ cv}$$

75 \cdot \eta \qquad 75 \cdot 0.82

b.7) Como são duas bombas iguais, a potência consumida pelo conjunto para o ponto P'2 menos favorável, será:

$$Q_1 = Q_2 = 374 \text{ l/s (ou } 1.345 \text{ m}^3\text{/h)}$$

 $n_1 = n_2 = 0.82$

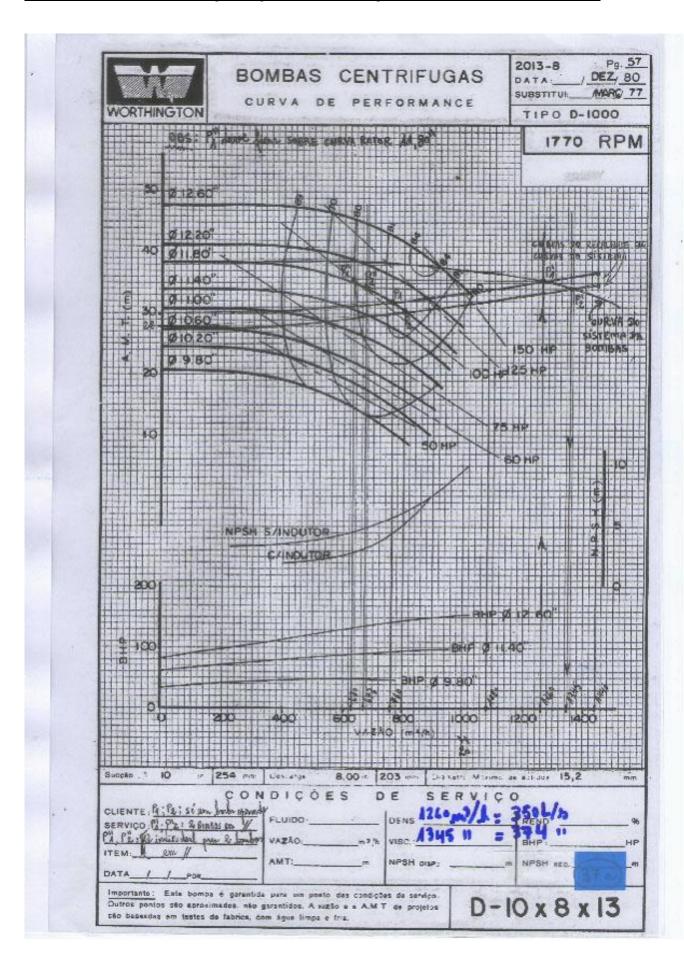
Logo:

$$P_T = 1.000 \cdot 0.374 \cdot 34.00 = 207 \text{ cv}$$

75 \cdot 0.82

As curvas da figura da página 44 consolidam a solução.

2. Exercício proposto


Resolver o mesmo problema com a utilização da equação Universal.

3.4. CONDUTOS EQUIVALENTES

Uma canalização equivalente à outra (ou a outras) é aquela capaz de conduzir a mesma quantidade de água com a mesma perda de carga total.

Na prática, determina-se o diâmetro ou o comprimento de uma canalização equivalente com o objetivo de se estudar a substituição de canalizações.

Considerando-se dois condutos com o mesmo coeficiente de rugosidade, o primeiro com o diâmetro D_1 e comprimento L_1 e o segundo com o diâmetro D_2 e comprimento L_2 , para que o segundo conduto seja equivalente ao primeiro, é necessário que a perda de carga total seja a mesma para o mesmo valor de Q.

Por exemplo, a partir da fórmula Universal ou de Darcy-Weisbach, pode-se escrever:

$$\Delta H = f \cdot \frac{L \cdot V^2}{D \cdot 2g} : \frac{\Delta H}{L} = \frac{f}{2g} \frac{Q^2}{S^2} : \frac{1}{D} ; \text{como } \frac{\Delta H}{L} = J \text{ (por definição)};$$

$$J = \frac{f}{2g} \frac{16.Q^2}{\Pi^2.D^4} \frac{1}{D} = \boxed{\frac{8.f}{\Pi^2.g}} \frac{Q^2}{D^5} \therefore J = K \frac{Q^2}{D^5}$$
 (1)

Aplicando a equação (1) para o 1º conduto, tem-se:

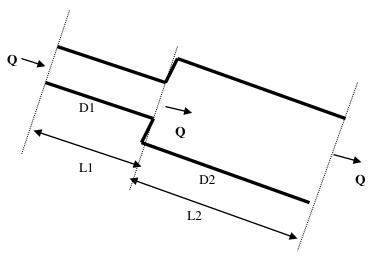
$$\Delta H_I = k \cdot \frac{Q^2}{D_1^5} \cdot L_I$$

Para o 2º conduto, tem-se:

$$\Delta H_2 = k \cdot \frac{Q^2}{D_2^5} \cdot L_2$$

Para que sejam equivalentes, é necessário que $\Delta H_1 = \Delta H_2$ e, portanto:

$$k \cdot \frac{Q^2}{D_1^5} \cdot L_{1=k} \cdot \frac{Q^2}{D_2^5} \cdot L_2 \quad \therefore \quad L_2 = L_{1*} \left(\frac{D_2}{D_1} \right)^5 \quad \text{ou: } \frac{L_1}{D_1^5} = \frac{L_2}{D_2^5}$$


Se, ao invés, fosse utilizada a fórmula de Hazen-Williams, resultaria:

$$L_2 = L_1 \cdot (\frac{D_2}{D_1})^{4,87}$$
 ou: $\frac{L_1}{D_1^{4,87}} = \frac{L_2}{D_2^{4,87}}$

Como exercício complementar, desenvolver a dedução da expressão anterior.

3.4.1. Associação de condutos em série

Dois são os problemas que podem aparecer quando condutos de diferentes diâmetros são associados em série (percorridos pela mesma vazão Q). De acordo com a figura seguinte, tem-se:

1º problema:

- Dados Q, D₁, D₂, L₁, L₂ e a natureza do fluído e do conduto e do flúido;
- Determinar a perda de carga ΔH .

(uespreziver e nao considerada na maioria dos casos) a perda de carga distribuida, esta última calculada por qualquer dos processos ou fórmulas conhecidas (Hazen-Williams ou Fórmula Universal).

$$\begin{aligned} \mathbf{Q} &= 0,\!2785 * \mathbf{C} * \mathbf{D}^{2,63} * \mathbf{J}^{0,54} \; ; \; \; \text{Calcula-se J}_1 \quad \therefore \quad \Delta H_1 = J_1 * L_1 \\ &\quad \quad \text{Calcula-se J}_2 \quad \therefore \quad \Delta H_2 = J_2 * L_2 \\ &\quad \quad \Delta H_{TOT} = \Delta H_1 + \Delta H_2 \end{aligned}$$

2º problema:

- Dados ΔH, D₁, D₂, L₁, L₂ e a natureza do conduto e do flúido;
- Determinar **Q**.

Face a indeterminação do problema, ele é resolvido por tentativas, isto é, admite-se uma vazão Q' e calculam-se as perdas de carga nos trechos e ao final verifica-se se o $\Sigma\Delta Hi=\Delta H$. Caso $\Sigma\Delta Hi\neq\Delta H$, faz-se nova tentativa com o valor de "Q" até obter-se a condição $\Sigma\Delta Hi\cong\Delta H$.

No caso particular de tubulações de mesmo material e de idades e diâmetros próximos, pode-se considerar os coeficientes de rugosidade como sendo iguais e, utilizando-se um conduto equivalente de diâmetro D e comprimento L, tem-se, para o desenho da figura anterior:

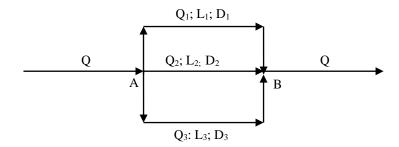
$$\Delta H = \Delta H_1 + \Delta H_2$$

ou

$$\underline{\underline{L}} = \underline{\underline{L}_1} + \underline{\underline{L}_2}$$

$$D^5 D_1^5 D_2^5$$

Generalizando-se, resulta a expressão que dá L e D para o conduto equivalente a n condutos em série:


$$\underline{\underline{L}} = \underline{\underline{L}_1} + \underline{\underline{L}_2} + \underline{\underline{L}_3} + \dots + \underline{\underline{L}_n}$$
 (Conhecida como Regra de Dupuit)
$$\underline{D}^5 \quad D_1^5 \quad D_2^5 \quad D_3^5 \qquad Dn^5$$

Caso houvesse sido utilizada a equação de Hazen-Williams, resultaria:

$$\underline{L} = \underline{L_1}_{4,87} + \underline{L_2}_{2^{4,87}} + \underline{L_3}_{3^{4,87}} + \dots \underline{L_n}_{Dn^{4,87}}$$

Como exercício complementar, desenvolver a dedução da expressão anterior.

3.4.2. Associação de condutos em paralelo

1º problema:

- Determinar Q, Q₁, Q₂ e Q₃, sendo dados D₁, D₂, D₃, L₁, L₂, L₃ e ΔH_{AB} e a natureza dos condutos.

Com a utilização da fórmula de Hazen-Williams, tem-se:

- a) note-se que: $\Delta H_1 = \Delta H_2 = \Delta H_3 = \Delta H_{AB}$
- b) Calcula-se $J_1 = \underline{\Delta H_1}$ e com D_1 , calcula-se Q_1 ;
- c) Calcula-se $J_2 = \underline{\Delta H_2}$ e com D_2 , calcula-se Q_2 ;
- d) Calcula-se $J_3 = \underline{\Delta H_3}$ e com D_3 , calcula-se Q_3 ; L_3
- e) Da equação da continuidade, faz-se $Q = Q_1 + Q_2 + Q_3$.

 2^{o} problema: - Dados Q, D_1 , D_2 , D_3 , L_1 , L_2 , L_3 e as características dos condutos;

- Determinar Q_1 , Q_2 , Q_3 e ΔH_{AB} .

No caso particular de tubulações de mesmo material e idades e diâmetros próximos, pode-se resolver pelo método dos condutos equivalentes (de diâmetro D e comprimento L). Com efeito, a partir da fórmula Universal $\Delta H = \underline{k \cdot L \cdot Q^2}$ e tendo em vista que $Q = Q_1 + Q_2 + Q_3$, resulta:

$$\left(\frac{\Delta H_{AB} \cdot D^{5}}{k \cdot L}\right)^{1/2} = \left(\frac{\Delta H_{1} \cdot D_{1}^{5}}{k \cdot L_{1}}\right)^{1/2} + \left(\frac{\Delta H_{2} \cdot D_{2}^{5}}{k \cdot L_{2}}\right)^{1/2} + \left(\frac{\Delta H_{3} \cdot D_{3}^{5}}{k \cdot L_{3}}\right)^{1/2} + \dots + \left(\frac{\Delta H_{n} \cdot D_{n}^{5}}{k \cdot L_{n}}\right)^{1/2}$$

Considerando-se $k = k_1 = k_2 = k_3$ e como $\Delta H_{AB} = \Delta H_1 = \Delta H_2 = \Delta H_3$, resulta:

$$\left(\frac{D^5}{L}\right)^{1/2} = \left(\frac{D_1^5}{L_1}\right)^{1/2} + \left(\frac{D_2^5}{L_2}\right)^{1/2} + \left(\frac{D_3^5}{L_3}\right)^{1/2} + \dots + \left(\frac{D_n^5}{L_n}\right)^{1/2}$$

Fixando-se L, tem-se o diâmetro equivalente D, que conjugado com a vazão Q e o valor de C, fornece o J_{AB} e daí $\Delta H_{AB} = J_{AB}$. L.

Como $\Delta H_1 = \Delta H_2 = \Delta H_3 = \Delta H_{AB}$, tem-se J_1 , J_2 e J_3 , os quais conjugados com os diâmetros D_1 , D_2 e D_3 , fornecem Q_1 , Q_2 e Q_3 . Generalizando, pode-se escrever:

$$\left(\frac{D^{5}}{L}\right)^{1/2} = \left(\frac{D_{1}^{5}}{L_{1}}\right)^{1/2} + \left(\frac{D_{2}^{5}}{L_{2}}\right)^{1/2} + \left(\frac{D_{3}^{5}}{L_{3}}\right)^{1/2} + \dots + \left(\frac{D_{n}^{5}}{L_{n}}\right)^{1/2}$$

Utilizando-se a equação de Hazen-Williams, resultaria:

$$\left(\frac{D^{2,63}}{L^{0,54}}\right) = \left(\frac{D_1^{2,63}}{L_1^{0,54}}\right) + \left(\frac{D_2^{2,63}}{L_2^{0,54}}\right) + \left(\frac{D_3^{2,63}}{L_3^{0,54}}\right) + \dots + \left(\frac{D_n^{2,63}}{L_n^{0,54}}\right)$$

Como exercício complementar, desenvolver a dedução da equação anterior.

Exercício 1: uma canalização é constituída por dois trechos horizontais em série:

$$D_1 = 100 \text{ mm}, L_1 = 50 \text{ m}$$

 $D_2 = 150 \text{ mm}, L_2 = 650 \text{ m}$

Calcular o diâmetro de uma tubulação equivalente capaz de substituir o encanamento existente. Admitindo que a pressão dinâmica disponível a montante seja de 15 mca, definir também a pressão dinâmica disponível a jusante, supondo que pelo conduto equivalente escoará uma vazão de 12 l/s. Adotar a fórmula Universal nos cálculos. Considerar:

$$\varepsilon = 2.5 \cdot 10^{-4} \text{ m};$$

 $v = 1.007 \cdot 10^{-6} \text{ m}^2/\text{s};$

Solução:

a) Diâmetro equivalente:

$$\underline{L}_{D^5} = \underline{L}_{1}^{5} + \underline{L}_{2}^{5} = \underline{50}_{0.100}^{5} + \underline{650}_{0.150}^{5} = 13.559.671$$

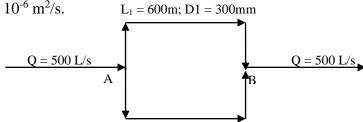
$$D^5 = \frac{700}{13.559.671} \therefore \mathbf{D} = (5,16 \cdot 10^{-5})^{1/5} = 0,139 \text{ m}$$

b) Pressão disponível a jusante:

$$v = \frac{4 \cdot Q}{\pi \cdot D^2} = \frac{4 \cdot 0.012}{\pi \cdot (0.139)^2} = 0.79 \text{ m/s}$$

Re =
$$\underline{v \cdot D} = \underline{0.79 \cdot 0.139}_{v} = 109.047$$

v $1.007 \cdot 10^{-6}$


$$f = \frac{1,325}{\left[\ln\left(\frac{2,5 \cdot 10^{-4}}{3,7 \cdot 0,139} + \frac{5,74}{(109.047)^{0.9}}\right)\right]^2} = 0,0246$$

$$\Delta H = 0.0246 \cdot \frac{(0.79)^2}{2g} \cdot \frac{700}{0.139} = 3.94 \text{ m}$$

Pressão dinâmica disponível = 15 - 3,94 = 11,06 m

Exercício 2: Para o esquema seguinte, determinar o diâmetro equivalente, as vazões que passam por D_1 e D_2 (tubos horizontais), e a pressão disponível em B, supondo disponíveis 20 mca em A. *Considerar*:

- tubulação de PVC;
- $-\varepsilon = 1.5 \cdot 10^{-6} \text{ m};$
- $-\nu = 1,007 \cdot 10^{-6} \text{ m}^2/\text{s}.$

 $L_2 = 400m$; $D_2 = 450mm$

Solução:

a) Diâmetro equivalente:

$$\left(\frac{D^5}{L}\right)^{1/2} = \left(\frac{D_1^5}{L_1}\right)^{1/2} + \left(\frac{D_2^5}{L_2}\right)^{1/2} = \left(\frac{0,300^5}{600}\right)^{1/2} + \left(\frac{0,450^5}{400}\right)^{1/2} = 8,8 \cdot 10^{-3}$$

$$\frac{D^5}{L} = (8.8 \cdot 10^{-3})^2 = 7.74 \cdot 10^{-5} :: D = (7.74 \cdot 10^{-5} \cdot L)^{1/5}$$

Fixando L = 600 m (poderia ser 400 m), resulta D = 0.541 m.

Sugestão: Experimente fixar D = 0.500m e determine o L equivalente.

b) Cálculo da perda de carga:

$$v = {4 \cdot 0.500 \over \pi \cdot (0.541)^2} = 2.18 \text{ m/s}$$

$$Re = \underbrace{2,18 \cdot 0,541}_{1,007 \cdot 10^{-6}} = 1.171.182$$

$$\Delta H = f \cdot \frac{v^2}{2g} \cdot \frac{L}{D} \qquad ; \qquad f = \underbrace{\frac{1,325}{\ln\left(\frac{1.5 \cdot 10^{-6}}{3.7 \cdot 0.541} + \frac{5.74}{(1.171.182)^{0.9}}\right)}}_{3,7 \cdot 0.541} = 0.0114$$

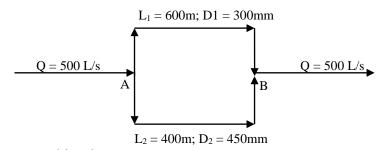
$$\Delta H = 0.0114 \cdot \frac{(2.18)^2}{2g} \cdot \frac{600}{0.541} = 3.06 \text{ m}$$

- c) Cálculo das vazões por D₁ e D₂:
 - c.1) Cálculo da vazão Q₁:

$$Q_{1} = \left(\frac{\Delta H_{AB} \cdot D_{1}^{5}}{k_{1} \cdot L_{1}}\right)^{1/2} = \left(\frac{3,06 \cdot 0,300^{5}}{\frac{8 \cdot f}{\Pi^{2} \cdot g} \cdot 600}\right)^{1/2} = 0,115m^{3} / s$$

c.2) Cálculo da vazão Q2:

$$Q_{2} = \left(\frac{\Delta H_{AB} \cdot D_{2}^{5}}{k_{1} \cdot L_{2}}\right)^{1/2} = \left(\frac{3,06 \cdot 0,450^{5}}{\frac{8 \cdot f}{\Pi^{2} \cdot g} \cdot 400}\right)^{1/2} = 0,386m^{3} / s$$


d) Pressão disponível em B:

$$P_B = 20 - 3.06 = 16.94 \text{ m}$$

Observação: Se houvesse desnível entre os extremos dos tubos (pontos A e B), a pressão em B deveria considerar, além das perdas, também o referido desnível, ou seja:

$$P_{\scriptscriptstyle B} = P_{\scriptscriptstyle A} - \Delta H_{\scriptscriptstyle AB} + (\cot a_{\scriptscriptstyle A} - \cot a_{\scriptscriptstyle B})$$

Outra forma expedita de resolver o problema seria arbitrando, "a priori", qualquer perda de carga, calculando-se as vazões para esta perda e corrigindo-se os valores de vazão assim obtidos, através do cálculo de coeficiente que as relacione à vazão total que escoa pelas tubulações. Exemplificando com base no exercício anterior:

a) Perda de carga arbitrada:

$$\Delta H_{AB} = 10m$$

- b) Cálculo das vazões hipotéticas:
 - b.1) Cálculo da vazão Q₁:

$$Q_{1} = \left(\frac{\Delta H_{AB} \cdot D_{1}^{5}}{k \cdot 600}\right)^{1/2} = \left(\frac{10 \cdot 0,300^{5}}{k \cdot 600}\right)^{1/2} = 0,00636m^{3} / s$$

b.2) Cálculo da vazão Q2:

$$Q_2 = \left(\frac{\Delta H_{AB} \cdot D_2^5}{k \cdot 400}\right)^{1/2} = \left(\frac{10 \cdot 0,450^5}{k \cdot 400}\right)^{1/2} = 0,02147 m^3 / s$$

c) Ajuste das vazões:

$$\begin{aligned} Q'_T &= Q'_1 + Q'_2 = 0,00636 + 0,02147 = 0,02783 \text{ m}^3\text{/s (vazão hipotética)} \\ Q_T &= Q_1 + Q_2 = 0,500 \text{ m}^3\text{/s (vazão real, ou vazão ajustada)} \\ &\frac{Q_T}{Q'_T} = \frac{0,500}{0,02783} = 17,966 \\ &Q_1 = \textbf{17,966.0,00636} = \textbf{0,114 m}^3\text{/s} \end{aligned}$$

As vazões acima são praticamente iguais às calculadas na página anterior.

 $Q_2 = 17,966 \cdot 0,02147 = 0,386 \text{ m}^3/\text{s}$

4. RESERVAÇÃO DE ÁGUA PARA DISTRIBUIÇÃO

Abordam-se a seguir aspectos básicos relativos aos reservatórios de distribuição de água.

4.1. OBJETIVOS DA RESERVAÇÃO

Os objetivos da implantação de reservatórios de distribuição de água são:

- · Compensar as flutuações ou variações de consumo;
- · Assegurar a reserva de combate a incêndio (*);
- · Fornecer água nos casos de interrupção de adução;
- · Regularizar pressões;
- · Linearizar vazões entre tomada d'água, adutora por recalque; adutora por gravidade

4.2. TIPOS DE RESERVAÇÃO

A reservação de água para distribuição pelas redes pode ser classificada como segue:

- a) De acordo com a posição em relação à rede de distribuição:
 - reservatório de montante;
 - reservatório de jusante;
 - reservatório intermediário.
- b) De acordo com a sua posição em relação ao terreno:
 - enterrados;
 - semi-enterrados (apoiados);
 - elevados.
- c) De acordo com a sua forma:
 - retangular;
 - circular;
 - Intze (forma de reservatório concebido por projetista alemão).
- d) De acordo com o material de construção:
 - concreto armado;
 - aço.

4.3. CAPACIDADE DE RESERVAÇÃO (CONSUMO)

4.3.1. Método baseado na curva de consumo:

4.3.1.1. Adução contínua:

No caso da adução contínua (24 horas do dia) representada na **figura 4.1**, considera-se o dia de maior consumo. A reta de adução, com vazão constante, tem para ordenada a vazão média do dia menos favorável. Na referida figura, o volume do reservatório será:

- Planimetria 1 + 3
- Planimetria 2
- -(1+3) = 2 é o volume do reservatório.

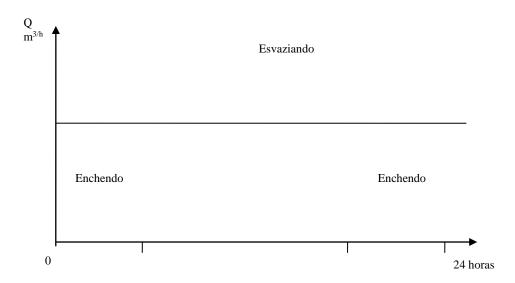


Figura 4.1: Curva de consumo para adução contínua, no dia de maior consumo.

Outra forma de determinar o volume para abastecimento é traçando o diagrama de massas, com as linhas de adução acumulada e de consumo acumulado. Sendo dados:

Tabela. 4.1: Adução acumulada horária para reservatório.

Hora do dia	Consumo parcial	Consumo	Adução acumulada	Diferença
(diferença)	(m^3)	acumulado (m³)	(m^3)	(m^3)
(1)	(2)	(3)	(4)	(5) = (4) - (3)
0 - 1	60	60	205	145
1 - 2	50	110	410	300
2 - 3	70	180	615	435
3 - 4	100	280	820	540
4 - 5	170	450	1.025	575(*)
5 – 6	280	730	1.230	500
6 - 7	340	1.070	1.435	365
7 - 8	310	1.380	1.640	260
8 – 9	250	1.630	1.845	215
9 – 10	230	1.860	2.050	190
10 - 11	210	2.070	2.255	185
11 - 12	220	2.290	2.460	170
12 - 13	240	2.530	2.665	135
13 – 14	250	2.780	2.870	90
14 - 15	270	3.050	3.075	25
15 – 16	330	3.380	3.280	-100
16 - 17	340	3.720	3.485	-235
17 - 18	320	4.040	3.690	-350
18 – 19	250	4.290	3.895	-395(*)
19 - 20	190	4.480	4.100	-380
20 - 21	140	4.620	4.305	-315
21 - 22	130	4.750	4.510	-240
22 - 23	90	4.840	4.715	-125
23 - 24	70	4.910	4.910	-
-	4.910	-	-	-

(*) Diferença máxima

$$Q_{med}d.m.c. = \frac{4.910m^3}{24h} = 205m^3/h$$
 Vol. Reservatório = 575 – (-395) = 970 m³

Professor Turma A: Gino Gehling

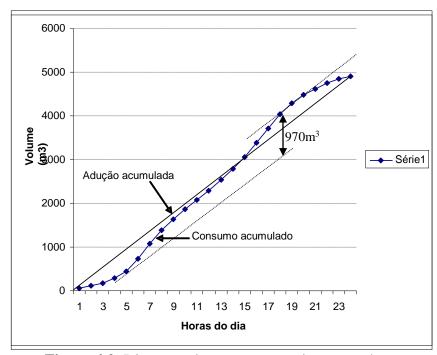
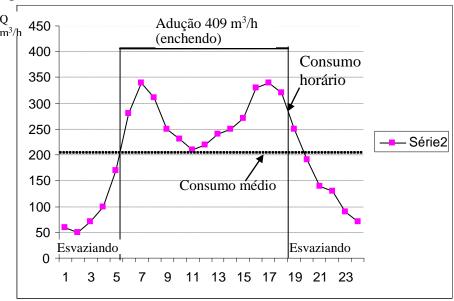
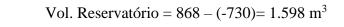


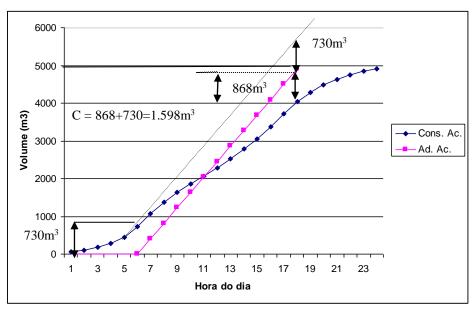
Figura 4.2: Diagrama de massas para adução contínua.

Na figura acima os pontos de tangência correspondem às horas em que o consumo iguala o seu valor médio. Quando, em qualquer ponto, a inclinação da tangente à curva for menor que a inclinação da reta de adução acumulada, o reservatório estará enchendo; ao contrário, esvaziando. Na **figura 4.2**, a capacidade do reservatório com relação a atender ao consumo, é dada pela distância entre duas tangentes à curva de consumo acumulado, ambas paralelas à reta de adução acumulada: uma tangente ocorre as 05:20 e outra as 19:50.

4.3.1.2. Adução descontínua:

Neste caso, faz-se a coincidência do bombeamento com o período de maior consumo. No exemplo da **tabela 4.2**:


Figura 4.3: Curva de consumo para adução descontínua.

TT 1 1 4	A 1 ~	1 //	1 / .	
Tabela 4	7. Aduca	a desconfiniia	horaria i	para reservatório.
I ubciu. Ti	■. I luuçu	, acscommuna	moraria j	puru reservatorio.

Hora do dia	Consumo parcial	Consumo	Adução acumulada	Diferença
(diferença)	(m^3)	acumulado (m ³)	(m^3)	(m^3)
(1)	(2)	(3)	(4)	(5) = (4) - (3)
0 - 1	60	60	-	-60
1 - 2	50	110	-	-110
2 - 3	70	180	-	-180
3 - 4	100	280	-	-280
4 - 5	170	450	-	-450
5 – 6	280	730	-	-730(*)
6 - 7	340	1.070	409	-661
7 - 8	310	1.380	818	-562
8 - 9	250	1.630	1.227	-403
9 – 10	230	1.860	1.636	-244
10 - 11	210	2.070	2.045	-25
11 - 12	220	2.290	2.454	164
12 - 13	240	2.530	2.863	333
13 – 14	250	2.780	3.272	492
14 - 15	270	3.050	3.681	631
15 - 16	330	3.380	4.090	710
16 - 17	340	3.720	4.499	779
17 - 18	320	4.040	4.908	868(*)
18 - 19	250	4.290	4.908	618
19 - 20	190	4.480	4.908	428
20 - 21	140	4.620	4.908	292
21 - 22	130	4.750	4.908	158
22 - 23	90	4.840	4.908	68
23 - 24	70	4.910	4.908	-2
-	4.910	-	-	-

$$Q_{med}d.m.c. = \frac{4.910m^3}{12h} = 409m^3/h$$

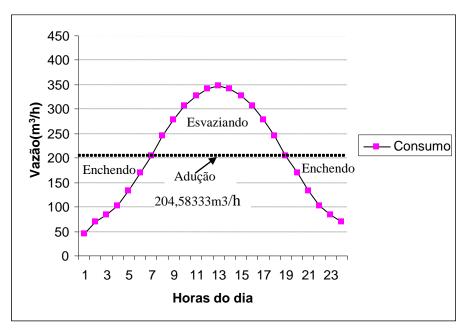


Figura 4.4: Curva de consumos acumulados para determinação da reserva de equilíbrio, para adução durante 12 horas por dia.

4.3.2. Método baseado na curva senoidal:

Este método é adequado a cidades para as quais não se disponham dados de consumo horário, que é o caso em que vai ser projetado o primeiro sistema de abastecimento de água de uma cidade: pode-se adotar então uma curva senoidal de consumo. É necessário então conhecer K₂ (coeficiente da hora de maior consumo) e V_d (vol. consumido em 24 horas, em dias de maior consumo). A figura 4.5 e a tabela 4.3 representam um comportamento senoidal para o consumo parcial. Os consumos horários foram arbitrados para resultar um consumo acumulado de 4.910m³, que é o dos exemplos anteriores. Após traçar-se a curva senoidal (figura 4.5), que representa a variação horária da demanda no dia de consumo máximo, medem-se as ordenadas referentes às diversas horas do dia, obtendo-se os dados da tabela 4.3.

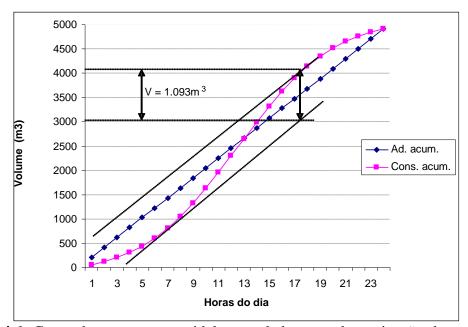
Figura 4.5: Curva senoidal de consumo para determinação da reserva de equilíbrio, com adução em contínuo por 24 horas.

O volume do reservatório, para garantir o abastecimento, será dado pela equação:

$$V = \frac{K_2 - 1}{\pi} \cdot Vd$$

Onde: V = volume de abastecimento necessário:

 K_2 = coeficiente da hora de maior consumo;


 V_d = vol. consumido em 24 horas, em dias de maior consumo.

Outra forma de se chegar ao volume de abastecimento (V), também denominada de reserva de equilíbrio, é traçando o diagrama de massas, com a reta de adução acumulada e a curva de consumo acumulado, representada na **figura 4.6**.

7T 1 1	4 3	A 1	~	. ,							1	
Tabela 4	4.	\mathbf{A} duc	മറ	COnfinita	nara	recer	Vatorio -	narg	Curva	senoidal	de	consumo.
I abcia.	т	1 Muuç	uo	Communa	para	ICSCI	vatorio,	parc	ı Cui va	Scholaai	uc	consumo.

Hora do dia	Consumo parcial	Consumo	Adução acumulada	Diferença
(diferença)	(m^3)	acumulado (m ³)	(m^3)	(m^3)
(1)	(2)	(3)	(4)	(5) = (4) - (3)
0 - 1	45	45	205	160
1 - 2	69	114	409	295
2 - 3	84	198	614	416
3 - 4	103	301	818	517
4 - 5	132	433	1023	590
5 - 6	169	602	1227	625
6 - 7	204	806	1432	626*
7 - 8	244	1051	1637	586
8 – 9	277	1329	1841	512
9 – 10	305	1635	2046	411
10 - 11	327	1962	2250	288
11 - 12	342	2304	2455	151
12 - 13	347	2651	2660	9
13 - 14	342	2993	2864	-129
14 - 15	327	3320	3069	-251
15 – 16	305	3626	3273	-353
16 - 17	277	3904	3478	-426
17 - 18	244	4149	3682	-467*
18 - 19	204	4353	3887	-466
19 - 20	169	4522	4092	-430
20 - 21	132	4654	4296	-358
21 - 22	103	4757	4501	-256
22 - 23	84	4841	4705	-136
23 - 24	69	4910	4910	0
-	4.910	-	-	-

$$Q_{med}d.m.c. = \frac{4.910m^3}{24h} = 204,58333m^3/h$$
 $C = 626 - (-467) = 1.093 \text{ m}^3$

Figura 4.6: Curva do consumo senoidal acumulado, para determinação da reserva de equilíbrio, para adução contínua de 24 horas.

Na **figura 4.6**, a capacidade do reservatório com relação a atender ao consumo, é dada pela distância entre duas tangentes à curva de consumo acumulado, ambas paralelas à reta de adução acumulada: uma tangente ocorre as 07:00 e outra por volta das 18:30. A referida distância, na **figura 4.6**, leva a um volume de aproximadamente 1.093 m³ para a reserva de equilíbrio.

Sugestão: Considere a curva senoidal de consumo do exercício anterior, mas com uma adução de 12 horas por dia, entre as 07:00 e as 19:00. Determine a reserva de equilíbrio do reservatório. *Resposta: aproximadamente* $1.350 \, m^3$.

4.3.3. Método prático:

Para cidades sem dados de consumo, adota-se como capacidade do reservatório de distribuição, o volume correspondente a um terço do consumo máximo diário das áreas dele dependentes:

$$V = \frac{K_1 \cdot q \cdot P}{3 \cdot (1.000 L/m^3)}$$

Onde:

 K_1 = coeficiente do dia de maior consumo;

q = consumo "per capita" (L/hab.dia);

P = população (habitantes);

V = volume para consumo (m³)

4.4. CAPACIDADES ADICIONAIS DE RESERVAÇÃO

À capacidade de reservação para atender ao consumo, devem ser acrescidas outras volumetrias, abordadas nos **itens 4.4.1** a **4.4.4**.

4.4.1. Demandas de emergência (C₁):

$$C_1 = Q \cdot t$$

onde: Q = vazão média normal de adução (m³/h);

t = período de interrupção na adução (h);

 $C_1 = consumo de emergência (m^3)$

4.4.2. Consumo da população flutuante (C2):

O consumo per capita da população flutuante pode ser diferente do consumo da população fixa (cidades balneárias, peregrinações religiosas, etc.).

$$C_2 = \frac{K_1 \cdot q \cdot P_2}{3 \cdot 1000 L/m^3}$$

onde: K_1 = coeficiente do dia de maior consumo;

q = consumo per capita (L/p.d);

P₂= população flutuante (p);

 C_2 = consumo da população flutuante (m³)

4.4.3. Consumos especiais:

Algumas cidades consideram consumos especiais, tais como irrigação de jardins e parques públicos.

4.4.4. Consumo de incêndio:

O consumo de incêndio é dado por:

$$C_3 = Q_1 \cdot t$$

onde: $C_3 = consumo de incêndio (m^3);$

 Q_1 = vazão para combate à incêndio crítico (m³/h);

t = tempo admitido de combate ao fogo (h)

Um critério adotado em São Paulo, para tempo de combate ao fogo de 6 horas, é apresentado na tabela que segue.

Tabela 4.4: Critério para determinar a volumetria de incêndio para reservatórios.

Categoria de edifícios	Vazão	Volumetria de incêndio
na zona	(L/s)	do reservatório (m³)
Pequenos edifícios	10	216
Edifícios maiores e mais altos	20-30	432-648
Edifícios Grandes	40-50	864-1080
Idem, com rede DN 300	100	2160

Assim, a volumetria total de um reservatório é dada por:

$$V_{total} = C + C_1 + C_2 + C_3 + \text{Consumos especiais (se houverem)}$$

Onde: C = Capacidade para abastecimento (m³);

 $C_1 = \text{consumo de emergência } (m^3);$

 C_2 = consumo da população flutuante (m³);

 $C_3 = \text{consumo de incêndio } (m^3)$

C_{especiais} = irrigação de praças e jardins (devemos, preferentemente, atender esta demanda por águas de reuso, em rede de abastecimento independente, ou aprovisionada por caminhões-pipa.

5. REDES DE DISTRIBUIÇÃO

Os sistemas de distribuição de água geralmente compreendem inúmeras canalizações interligadas que constituem as redes hidráulicas.

5.1. TIPOS DE REDES DE DISTRIBUIÇÃO

Do ponto de vista hidráulico, existem dois tipos de redes de distribuição:

5.1.1. Rede ramificada: em que se pode estabelecer o sentido de escoamento da água. São usadas principalmente em pequenas comunidades, núcleos habitacionais e condomínios. O grande inconveniente que apresentam é que todo o abastecimento fica condicionado ao funcionamento da canalização principal. É um tipo de rede típica de cidades com desenvolvimento linear pronunciado.

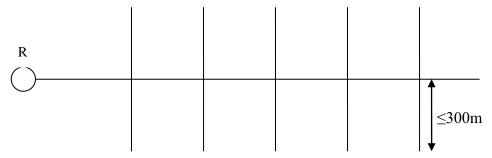
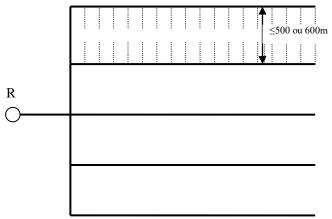



Figura 5.1: Traçado de rede ramificada.

5.1.2. Redes em grelha:

A **figura 5.2** apresenta um traçado de rede em grelha. A distância entre os diversos tramos paralelos deve ser de cerca de 500m (600m no máximo). Assim de cada tramo paralelo derivam-se ramificações secundárias.

Figura 5.2: Traçado de rede em grelha.

5.1.3. Rede malhada: as canalizações formam anéis e são interligadas, como na **figura 5.3**. "A priori", não se pode estabelecer o sentido de escoamento da água. As redes de distribuição de água das cidades com seu traçado característico em xadrez, constituem exemplos típicos. Os pontos de cruzamento denominam-se **nós**. O método utilizado na resolução da rede malhada é o de **Hardy-Cross**.

Professor Turma A: Gino Gehling

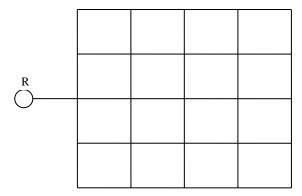


Figura 5.3: Traçado de rede malhada.

5.2. VAZÃO DE DISTRIBUIÇÃO

A vazão de distribuição referir-se-á a uma particular situação desfavorável correspondente à hora de maior consumo, do dia de maior consumo:

$$Q = \frac{k_1 \cdot k_2 \cdot q \cdot P}{86.400 s / d}$$

Onde:

Q = vazão de distribuição, em l/s;

q = "per capita" de projeto, l/hab.dia;

P = população prevista para a área a abastecer no fim de plano;

 k_1 e k_2 = coef. de pico, dia e hora de maior consumo, respectivamente, sendo

k₁ calculado com base na produção diária (geralmente 1,2) e k₂ adotado **1,50**.

A vazão específica a partir da qual são determinadas as vazões de dimensionamento, pode referir-se ao comprimento dos condutos da rede ou à área da cidade. No primeiro caso, tem-se a vazão de distribuição em marcha:

$$q_m = \frac{k_1 \cdot k_2 \cdot q \cdot P}{86.400 \cdot L_t}$$

Onde:

 L_t = comprimento total da rede em metros;

q_m = vazão de distribuição em marcha (L/s por segundo por metro de tubo)

A vazão de distribuição referida à unidade de área é utilizada quando se estuda a rede por métodos de tentativas diretas, principalmente, o método de Hardy-Cross. A vazão específica de distribuição tem para valor:

$$q_d = \frac{k_1 \cdot k_2 \cdot q \cdot P}{86.400 \cdot A}$$

Onde:

q_d = é a vazão específica de distribuição (L/s.ha);

A = área abrangida pela rede em hectares (ha).

5.3. LIMITES DE VELOCIDADE/VAZÃO POR DIÂMETRO

Deve-se limitar as velocidades e vazões por diâmetro da tubulação, de acordo com os valores propostos no quadro seguinte. Com isto, resultarão perdas de carga compatíveis com as pressões estática e dinâmica recomendadas pela NBR-12218/94 (observar que

nesta norma a referência à Vmín = 0,60 m/s está errada!), para o projeto do sistema de redes de distribuição.

Tabela 5.1: Vazões e velocidades máximas em função do diâmetro.

Diâmetro	Vmáx	Qmáx	Diâmetro	Vmáx	Qmáx
(mm)	(m/s)	(l/s)	(mm)	(m/s)	(1/s)
50	0,50	1,0	300	1,20	84,8
75	0,50	2,2	350	1,30	125,0
100	0,60	4,7	400	1,40	176,0
150	0,80	14,1	450	1,50	238,0
200	0,90	28,3	500	1,60	314,0
250	1,10	53,9	600	1,80	509,0

5.4. POSIÇÃO DA REDE NAS VIAS

As redes de distribuição podem ser simples ou duplas, de acordo com a orientação do órgão fiscalizador, e em função de exigências administrativas, que poderão impor critérios que decorrerão, por exemplo, de pavimentação recente das vias. Em qualquer hipótese, dever-se-á dar preferência ao traçado pelos passeios, o que causará menores transtornos aos transeuntes e ao tráfego.

No caso de vias com mais que 18 m de largura, a NBR-12218/94 estabelece que as ruas deverão ter rede dupla; esta assertiva vale para avenidas. Em Porto Alegre, o DMAE exige em todos os novos loteamentos que vêm sendo implantados, independentemente de seu tamanho, o projeto de redes duplas e utilização de tubulações de ferro fundido nos cruzamentos.

5.5. MATERIAIS UTILIZADOS

Está consagrada no mercado e no meio consultor, a utilização de tubulações de PVC (cloreto de polivinila), tipo Classe 15 (CL-15, significa que a resistência da tubulação é igual a $15/2 = 7.5 \text{ kg/cm}^2$ ou 75 mca); as tubulações de fibro-cimento estão em desuso e vêm sendo substituídas gradativamente.

A CORSAN adota tubos de PVC, e o DMAE vem adotando tubos PEAD, nas redes de distribuição.

Para diâmetros iguais ou maiores que DN 400, a regra tem sido a utilização de tubulações de ferro fundido.

Tanto o PVC quanto o F°F° são encontrados em comprimentos de 6 m, e são do tipo ponta-bolsa com anel de borracha. Excepcionalmente (alguma travessia), utiliza-se junta flangeada.

As tubulações de aço não são utilizadas correntemente em distribuição de água; são, no entanto, recomendadas quando se precisa fazer, por exemplo, determinado tipo de travessia (como no arroio Dilúvio, em Porto Alegre). São tubulações leves, que podem ser montadas em grandes comprimentos, inclusive com solda realizada "in situ".

5.6. DIÂMETRO MÍNIMO

O diâmetro mínimo recomendado pela NBR-12218 é o DN 50.

5.7. PRESSÕES

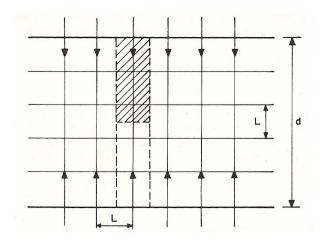
As pressões recomendadas pela NBR-12218 são:

Máxima estática: 50 mca;Mínima dinâmica: 10 mca.

Se ocorrerem pressões estáticas superiores a 60 mca, a área atendida não deve exceder em mais que 10 % a área atendida com pressões até 50 mca.

Se ocorrerem pressões estáticas superiores a 70 mca, a área atendida não deve exceder em mais que 5 % a área atendida com pressões até 50 mca.

Se ocorrerem pressões dinâmicas da ordem de 10 mca, a área atendida não deve exceder 10 % da área atendida à pressões superiores.


Se ocorrerem pressões dinâmicas da ordem de 8 mca, a área atendida não deve exceder 5 % da área atendida à pressões superiores.

Para loteamentos de até 1.000 residências familiares, são aceitas pressões dinâmicas mínimas da ordem de 6 mca, em se tratando de residências térreas (um só pavimento).

5.8. DISTÂNCIAS ENTRE DISTRIBUIDORES PRINCIPAIS/COMPRIMENTOS DA REDE SECUNDÁRIA (Fonte: Técnica de Abastecimento e Tratamento de Água, CETESB, 2ª ed., 1976)

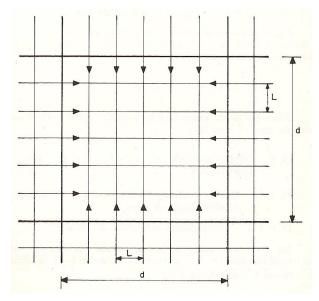
As distâncias máximas entre distribuidores tronco (maiores diâmetros), não devem exceder 500 m (no máximo, 600 m); já, os comprimentos máximos dos distribuidores secundários (DN 50 e 75, principalmente) não devem exceder 200 m, excepcionalmente atingindo 300 m.

5.8.1. Redes em "espinha de peixe" ou "em grelha": Admita-se dois condutos paralelos, distantes "d" hectômetros e as derivações dos condutos principais (condutos secundários), distando de cerca de 100m entre si, como na figura seguinte, e tomem-se duas derivações opostas, considerando-se a área média alimentada por uma delas.

Sendo:

q_d = vazão específica (l/s.ha);

dL/2 = área média (hachurada) em hectares servida por uma derivação, sendo d e L em hectômetros;


Q = vazão limite fixada para o conduto secundário.

$$d \equiv \frac{2 \bullet Q}{q_d \bullet L}$$

Figura 5.4: Rede em grelha ou em espinha de peixe.

5.8.2. Redes com condutos principais formando circuitos

Considere-se o circuito da figura seguinte, para determinar a distância "d" entre condutos paralelos vizinhos. Admita-se o circuito formado por quatro condutos iguais com lado "d" hectômetros e as derivações distantes de L hectômetros, em média.

Sendo:

d/L - 1 =número de derivações em cada lado;

4(d/L - 1) =total de derivações para o interior do circuito;

 q_d =vazão específica de distribuição (l/s.ha);

Q = vazão limite fixada para o conduto secundário;

 $4\left(\frac{d}{L}-1\right)Q$ = vazão total para a área interna, em l/s, que pode escoar pelas derivações;

Figura 5.5: redes formando circuitos.

$$d^2$$
. $q_d = 4\left(\frac{d}{L} - 1\right)Q$, donde resulta valor de "d"

5.9. APLICAÇÃO PRÁTICA

Vide representação gráfica na página seguinte. Lançar e dimensionar rede ramificada para distribuição de água no loteamento usando a equação de Hazen-Williams;

A distância entre cruzamentos do sistema viário é sempre a mesma: 100m. Adote o reservatório posicionado na cota 200, com o nível mínimo operacional na cota 220; Total de lotes: 480 lotes, cada um com 5 pessoas; $K_1 = 1,2$ e $K_2 = 1,5$;

Tubulação PVC (C = 140), devendo adotar-se diâmetros que satisfaçam as velocidades máximas admissíveis; Q = 150 L/hab.dia.

a) Capacidade de reservação (somente para atender o abastecimento, não incluindo reserva para incêndio, reserva de emergência...):

$$V_{d.m.c.} = k_1.P.q = 1,20 \times 2.400 \times 150 = 432.000 L = 432 m^3$$

Considerando
$$V_{res} = 1/3 \ V_{d.m.c} = 432 = 144 \ m^3 \implies V_{adotado} = 180 \ m^3$$

- b) Vazões unitárias: Neste caso, pode-se estabelecer dois critérios:
 - b.1) Vazão por metro linear de rede (q_m) :

$$q_{\rm m} = \frac{1,20 \cdot 1,50 \cdot 150 \cdot 2.400}{86.400 \cdot 2.400} = 0,003125 L/s.m$$

b.2) Vazão por lote (q₁)::

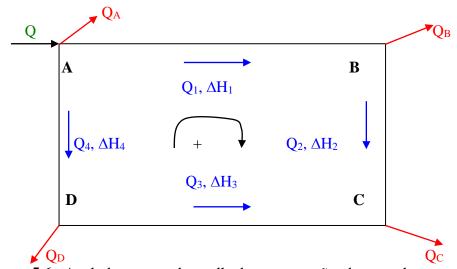
$$q_{1} = \frac{k_{1} \cdot k_{2} \cdot q \cdot P}{86.400 \cdot Lote} = \frac{1,20 \cdot 1,50 \cdot 150 \cdot 2.400}{86.400 \cdot 480} = 0,015625 L/s.lote$$

IPH	212 Turma A -	Sistemas de	e Água e	Fegatos -	Módulo 1	(Car	1 a	5)
11 11	212 I ui iiia A –	Disternas ut	c Agua c	Logotos -	MIOUUIO I	(Car). I a	J

.66

Observação: Esta página será distribuída impressa em aula, com a representação de curvas de nível, reservatório e rede de distribuição.

PLANILHA DE CÁLCULO DA REDE DE DISTRIBUIÇÃO (Profundidade adotada para a rede = 2,00m)


	T DE CITE				içno (i	lorunaia	auc auotaua pa	ara a reuc –			^ .			~	1
no															
		(lo	tes)												
	Comp			Trecho	D	V	Perda d	carga	(m	1)	(m)	(r	n)	Máx.
J	(m)	No	A jus	(L/s)	mm	m/s	Unit.	Tot	M	J	M	J	M	J	(m)
		trecho					m/m	(m)							
12	100	0	480												
11	300	60	60												
10	300	60	60												
9	100	0	360												
8	300	60	60												
7	300	60	60												
6	100	0	240												
5	300	60	60												
4	300	60	60												
3	100	0	120												
2	300	60	60												
1	300	60	60												
	12 11 10 9 8 7 6 5 4 3	Comp (m) 12 100 11 300 10 300 9 100 8 300 7 300 6 100 5 300 4 300 3 100 2 300	Comp No trecho 12 100 0 11 300 60 60 7 300 60 6 100 0 5 300 60 4 300 60 3 100 0 2 300 60 60 60 60 60 60 6	Comp (m) No A justrecho 12 100 0 480 11 300 60 60 60 60 60 60 60 60 60 60 60 60 6	Comp (lotes) Vazão no Trecho (L/s) 12 100 0 480 11 300 60 60 10 300 60 60 8 300 60 60 7 300 60 60 6 100 0 240 5 300 60 60 4 300 60 60 3 100 0 120 2 300 60 60	Comp (m) Consumos (lotes) Vazão no Trecho (L/s) D mm 12 100 0 480 480 11 300 60 60 60 10 300 60 60 60 8 300 60 60 60 7 300 60 60 60 6 100 0 240 240 5 300 60 60 60 4 300 60 60 60 3 100 0 120 2 2 300 60 60 60	Comp	Comp	Comp	Comp (m) No A jus Trecho (L/s) D W No M M	Comp	Comp	Composition Cotas Cotas Terreno Composition Cotas Terreno Composition Cotas Terreno Composition Cotas Terreno Cotas Cota	Composition Composition	Composition Composition

Professor Turma A: Gino Gehling

5.10. O CASO ESPECÍFICO DAS REDES MALHADAS/MÉTODO DE HARDY-CROSS

Este método é uma aplicação particular de um método mais geral, conhecido por "método da liberação" (*relaxation method*) de largo emprego na engenharia.

O método de Hardy-Cross será aplicado para a determinação de **vazões** e dos **diâmetros** dos vários trechos do anel, sendo conhecida a vazão de entrada do anel (Q) e as vazões de saída do mesmo. Considerar o anel da figura seguinte, com as vazões de entrada Q e de saída Q_A, Q_B, Q_C e Q_D. Para efeito de simplificação, considera-se que a vazão distribuída em marcha no trecho AB ocorra de forma concentrada no ponto B.

Figura 5.6: Anel de uma rede malhada, com vazão de entrada e vazões de saída conhecidas

1ª Lei: Lei das malhas: Percorrendo a malha num sentido qualquer, como o indicado na figura, pode-se escrever:

$$\Delta H_1 + \Delta H_2 - \Delta H_3 - \Delta H_4 = 0$$

ou genericamente:

$$\sum \Delta \mathbf{H_i} = \mathbf{0}$$

onde "i" varia de 1 a "n", sendo "n" o número de trechos da malha.

2ª Lei: Lei dos nós: A equação da continuidade aplicada a cada um dos nós, como por exemplo, o nó C, fornece (considerando positivas as vazões que chegam e negativas as que saem):

$$+ \mathbf{Q}_2 + \mathbf{Q}_3 - \mathbf{Q}_c = \mathbf{0}$$

ou generalizando:

$$\sum \mathbf{Q_i} = \mathbf{0}$$

onde "i" varia de 1 a "m", sendo "m" o número de trechos que concorrem para o nó.

Estas duas equações resumem os fundamentos hidráulicos do método, mas não são suficientes para a solução dos problemas de projetos, pois as incógnitas são as vazões e os diâmetros. Para simplificar, considera-se que as vazões distribuídas **em marcha**, ao longo de cada trecho, localize-se no nó a jusante do trecho. A seqüência de etapas é a seguinte:

1 - Estabelecer inicialmente:

- vazão de alimentação: Q;
- vazões de distribuição: QA, QB, QC, QD;
- comprimento dos vários trechos (valores medidos, reais);
- cotas de níveis dos vários nós (valores medidos, reais);
- adotar um sentido positivo de percurso.

O comprimento dos trechos e as cotas dos nós são reconhecidos pelos softwares nas plantas digitais. Pelo "bom senso" e experiência, a partir da observação das cotas dos nós e das vazões de alimentação e distribuição, admite-se uma vazão para cada trecho (Q₁, Q₂, Q₃ e Q₄), tendo o cuidado de satisfazer a Lei dos Nós.

- 2 Com vazões fixadas, fazer uma primeira tentativa de atribuição de diâmetro a cada trecho, utilizando a Tabela de Velocidades e Vazões Máximas (**tabela 5.1**).
- 3 A verificação do acerto da tentativa das vazões e diâmetros e o cálculo da correção a efetuar são feitos a partir da Lei das Malhas, como se indica:

Sendo
$$\Delta H_i = \frac{k_i \cdot L_i \cdot Q_i^2}{D_i^5}$$
 e fazendo $\frac{k_i \cdot L_i}{D_i^5} = r_u$ na fórmula Universal acima, obtém-se (*obs: ru = cte*): $\Delta H_i = r_u \cdot Q_i^2$

Utilizando para o cálculo da perda de carga a fórmula prática de Hazen-Williams, a expressão anterior ficaria:

$$\Delta Hi = Ji \cdot Li = \frac{r_H}{W} \cdot Q_i^{1.85}$$

E de modo geral, qualquer que seja a fórmula usada:

$$\Delta Hi = r \cdot Q_i^n$$

Na Lei das Malhas, obtém-se:

$$\Sigma \Delta H_i = \Sigma (r \cdot Q_i^n) = C$$

Só por coincidência C=0 na primeira tentativa, o que mostraria estarem corretas as vazões Q_i . Sendo via de regra $C\neq 0$, deve-se procurar a correção de vazões ΔQ para que resulte:

$$\sum r(Q_i + \Delta Q)^n = 0$$

Desenvolvendo o binômio:

$$\sum r(Q_i + \Delta Q)^n = \sum r(Q_i^n + n \cdot Q_i^{n-1} \cdot \Delta Q + \frac{n(n-1)}{1 \cdot 2} \cdot Q_i^{n-2} \cdot \Delta Q^2 + ...) = 0$$

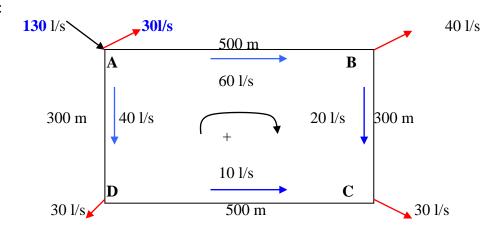
Desprezando os termos de ordem superior à primeira em ΔQ , obtém-se:

$$\sum r(Q_i^n + n \cdot \Delta Q_i^{n-1} \cdot \Delta Q) = \sum r \cdot Q_i^n + \sum r \cdot nQ_i^{n-1} \cdot \Delta Q = 0$$

$$\Delta Q = \frac{-\sum r \cdot Q_{i}^{n}}{n \cdot \sum r \cdot Q_{i}^{n-1}} = \frac{-\sum \Delta Hi}{n \cdot \sum (r \cdot \frac{Q_{i}^{n}}{Q_{i}})} = \frac{-\sum \Delta Hi}{n \cdot \sum \frac{\Delta H_{i}}{Q_{i}}}$$

No caso particular da fórmula de Hazen-Williams, tem-se:

$$\Delta Q = \frac{-\Sigma \Delta H_i}{1,85 \cdot \Sigma \frac{\Delta H_i}{Q_i}}$$


- 4 A correção ΔQ em cada trecho é somada ou subtraída às vazões admitidas, quando o sentido de percurso indicado na malha for coincidente ou não com o do escoamento no trecho.
- 5 Com as novas vazões obtidas, os cálculos são repetidos até que se chegue a uma correção ΔQ desprezível e, portanto, às vazões-solução.
- 6 Conhecidas as vazões e calculadas as perdas de carga, obtém-se as cotas piezométricas dos nós. Caso estas acarretem valores de pressão inadequadas (P < $P_{\text{mín}}$ ou $P > P_{\text{máx}}$) é necessário um remanejamento dos condutos da rede, alterando os seus diâmetros ou a sua natureza, ou ainda alterando o nível do reservatório.

Exercícios de aplicação:

Exercício 1 - Dado o anel de distribuição abaixo e, sabendo-se que os nós encontram-se todos à mesma cota, pede-se:

- a) determinar os diâmetros e as vazões dos trechos;
- b) admitindo-se que a linha piezométrica em A tenha 50 mca, determinar as pressões disponíveis nos demais nós. Admitir C=100 (na fórmula de Hazen-Williams) para todas as canalizações.

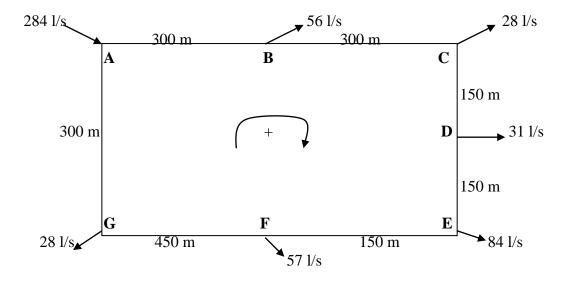
Solução:

- 1. Adota-se o sentido positivo do percurso + ;
- 2. Faz-se a 1ª tentativa de vazões (------), obedecendo a Lei dos Nós;
- 3. Com a Tabela de Velocidades e Vazões Máximas, pré-dimensionam-se os trechos (AB = 12", BC = 8", CD = 6", AD = 10");
- 4. Com o auxílio da planilha em anexo, procede-se os cálculos.

$$\Delta Q1 = \frac{-\Sigma \Delta H_1}{1,85 \cdot \Sigma} = \frac{-(-0,37)}{1,85 \cdot (341,067)} = +0,587 L/s; \therefore \Delta Q2 \Rightarrow desnecess\'{a}ria$$

Pressões disponíveis, partindo do Ponto A, onde a Pdin é 50mca

```
PdinB = 50,000 - 2,066 = 47,934mca
PdinC = 50,000 - 2,066 - 1,210 = 46,724 mca
PdinD = 50,000 - 2,066 - 1,210 + 1,922 = 48,646 mca
```


Ou, percorrendo o anel em sentido inverso:

```
PdinB = 50,000 - 1,359+1,210 =47,929 mca
PdinC =50,000 - 1,359-1,922 =46,719 mca
PdinD = 50,000 - 1,359 = 48,641 mca
```

A diferença nas cotas da pressão em C, deve-se ao fato de que $\sum \Delta \text{Hi} \neq 0$; ($\sum \Delta \text{Hi} = 0,005$; aceitável porque $\leq 0,50$)

Exercício 2 - Uma rede de distribuição de água de uma cidade apresenta um anel de distribuição como mostrado no esquema seguinte, sendo alimentado pelo nó A, com vazão de 284 l/s e sob pressão de 45,5 mca. Sabe-se que todos os nós encontram-se à mesma cota no terreno. Nestas condições, e admitindo-se C = 140 para todas as tubulações, determinar:

- a) as vazões, diâmetros e sentidos de escoamento nos vários trechos, com indicação clara em esquema final;
 - b) as pressões obtidas nos vários nós.

5.11. CONDUTOS COM DISTRIBUIÇÃO EM MARCHA

Neste caso, o conduto (**figura 5.7**) tem seção constante ao longo de seu comprimento, porém, a vazão varia de seção para seção, porque de trecho em trecho ou mesmo continuamente a vazão é parcialmente retirada do conduto ou lhe é fornecida. Este caso é típico das adutoras que sofrem "sangrias" ao longo de seu trajeto. Na figura seguinte, está esquematicamente representado o caso de um conduto do qual a vazão é retirada continuamente.

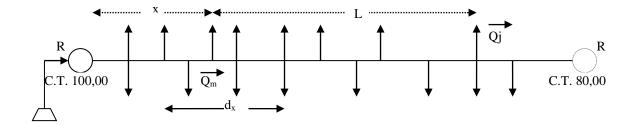


Figura 5.7: Distribuição em marcha em um conduto.

Para duas seções distantes de **dx**, pode-se escrever, usando a fórmula universal da perda de carga:

$$-dH = f \frac{dx}{D} \cdot \frac{v^2}{2g} = f \cdot \frac{dx}{D} \cdot \frac{Q^2}{\frac{\pi^2 D^4}{16} \cdot 2g} = \frac{8f \cdot dx}{\pi^2 \cdot g \cdot D^5} Q^2$$

Onde o sinal menos decorre de ser H uma função decrescente. Integrando, tem-se:

$$-dH = \frac{8f \cdot Q^2}{\pi^2 \cdot g \cdot D^5} dx \quad \text{e, fazendo:} \quad \frac{8f}{\pi^2 g} = K$$

$$H_2 - H_1 = \Delta H = K \frac{Q^2}{D^5} dx$$

Na maioria dos problemas em que ocorre distribuição em marcha, o regime de escoamento é hidraulicamente turbulento e nessas condições $\mathbf{K} = \text{cte. Portanto}$:

$$\Delta H = \frac{K}{D^5} \cdot Q^2 \cdot dx$$

A expressão anterior pode ser integrada diretamente quando se conhece $Q=Q\left(x\right)$ ou então, como segue-se, através do teorema do valor médio. De fato, sendo Q_{m} - Q_{j} a vazão distribuída em \mathbf{L} , \mathbf{q} a vazão média unitária distribuída por metro de conduto, pode-se escrever:

$$q = \frac{Q_m - Q_j}{L}$$
, e também, $Q = Q_m - q_x$, ou: $Q = Q_j + q \cdot (L - x)$

Na expressão da perda de carga resulta:

$$\Delta H = \frac{K}{D^5} (Q_m^2 \cdot L - Q_m \cdot q \cdot L^2 + \frac{q^2 \cdot L^3}{3}) \quad \text{(com q = cte.)}$$

$$\Delta H = \frac{K \cdot L}{D^5} (Q_m^2 - Q_m \cdot q \cdot L + \frac{q^2 \cdot L^2}{3}) \quad \text{(Eq. de uma parábola cúbica)}$$

Chamando de Q_{fi} o trinômio entre parêntese, pode-se escrever:

$$(Q_m + \frac{q \cdot L}{2})^2 \angle Q_{fi}^2 \angle (Q_m + \frac{q \cdot L}{\sqrt{3}})^2$$

A $Q_{\rm fi}$ denomina-se vazão fictícia. Trata-se da vazão constante que, supostamente, circula pelo conduto e que substitui a vazão variável nos cálculos hidráulicos.

Geralmente, faz-se:

$$Q_{f_i} = Q_m + 0.55 \cdot q \cdot L$$
, ou, $Q_{f_i} = Q_m + 0.5 \cdot q \cdot L$, ou ainda: $Q_{f_i} = \frac{Q_m + Q_j}{2}$

Resulta, assim:

$$\Delta H = \frac{K \cdot L}{D^5} Q_{fi}^{\ 2} \qquad \text{(fórmula Universal)}$$

$$\Delta H = \frac{K \cdot L}{D^{4,87}} Q_{fi}^{\ 1,85} \quad \text{(fórmula de Hazen-Williams), onde: } K = \frac{10,64}{C^{1,85}}$$

Considerando-se que toda a vazão seja distribuída no conduto, $Q_j = 0$ e $Q_m = q.L$. Nestas condições, a equação da parábola cúbica fica:

a) Fórmula Universal:
$$\Delta H = \frac{K \cdot L}{D^5} \left(\frac{q^2 \cdot L^2}{3} \right) : \Delta H = \frac{K}{D^5} \cdot \frac{L}{3} \cdot Q_m^2$$

b) Fórmula de H. Williams:
$$\Delta H \cong \frac{K}{D^{4.87}} \cdot \frac{L}{3} \cdot Q_{fi} 1,85$$

Isto é, quando $Q_j = 0$ a perda de carga total é igual a um terço da que se verifica se Q_m se mantivesse constante.